-
The dissociation dynamics of HD+ molecule in an intense field is investigated by using an accurate three-dimensional time-dependent wave packet approach. When the 790-nm laser pulse interacts with HD+ molecule, the lowest electronic 1sσ and 2pσ states are coupled. Due to the existence of the permanent electric dipole moment, the transitions in HD+ molecule involve the direct absorption of an odd and even number of photons, thereby opening different pathways for dissociation. The model of the photon-dressed states is presented to analyze the possible dissociation pathways of HD+ molecule. The laser-induced dissociation of HD+ molecule is mainly composed of the four pathways: the direct one-photon absorption, the net two-photon absorption, the direct two-photon absorption, and the direct two-photon absorption. To reveal the dissociation mechanism of HD+ molecule, the kinetic energy resolved spectra are calculated at the given laser intensities. It is found that the dissociation pathways are strongly dependent on laser intensity, especially for the net one-photon absorption dissociation and direct two-photon absorption dissociation. With further research, the dissociation pathways of HD+ are controlled by regulating the intensity of laser pulse. At a laser intensity of 4.0 × 1013 W/cm2, the kinetic energy resolved spectrum for the vibrational state ν = 3 includes the contributions from the net two-photon absorption dissociation and the direct two-photon absorption dissociation. For the vibrational state ν = 6, HD+ molecule is preferentially dissociated via the net one-photon absorption. However, the dissociation mechanism of HD+ molecule at the vibrational states ν = 3 and ν = 6 have significant changes as the laser intensity increases to 2.0 × 1014 W/cm2. For the vibrational state ν = 3, the branching ratio between the dissociation pathway of the net two-photon absorption and that of the direct two-photon absorption has a dramatic change with the increase of laser intensity. Compared with the kinetic energy resolved spectra at laser energy of 4.0 × 1013 W/cm2, the height of the dissociation peak from the net two-photon absorption decreases, and that of the direct two-photon absorption increases at laser intensity of 2.0 × 1014 W/cm2. For the vibrational state ν = 6, the dissociation process of the net one-photon absorption almost disappears at laser intensity of 2.0 × 1014 W/cm2, and it is replaced by the dissociation pathway of the direct two-photon absorption.
-
Keywords:
- dissociation /
- quantum control /
- time-dependent wave packet method /
- kinetic energy resolved spectra
[1] 秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar
Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar
[2] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246
[3] Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar
[4] Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar
[5] Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar
[6] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar
Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar
[7] 姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar
Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar
[8] Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar
[9] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar
[10] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar
[11] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar
[12] Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar
[13] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[14] Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar
[15] Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar
[16] Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar
[17] McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar
[18] McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar
[19] Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar
[20] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar
[21] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar
[22] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar
[23] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[24] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar
[25] 姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar
Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar
[26] Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar
[27] McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar
-
图 2 激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Figure 2. At the laser intensity of I1 = 4.0 × 1013 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.
图 3 激光场强度I2 = 2.0 × 1014 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Figure 3. At the laser intensity of I2 = 2.0 × 1014 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.
图 4 当激光场强度I1 = 4.0 × 1013 W/cm2 (蓝线)和I2 = 2.0 × 1014 W/cm2 (红线)时, HD+分子在初始振动态ν = 6上光解离通道(激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Figure 4. The related pathways of dissociation for the vibrational state ν = 6 of HD+ molecule at the laser intensities of 4.0 × 1013 W/cm2 (blue line) and 2.0 × 1014 W/cm2 (red line). The laser wavelength is 790 nm, the pulse duration is 40 fs.
-
[1] 秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar
Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar
[2] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246
[3] Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar
[4] Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar
[5] Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar
[6] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar
Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar
[7] 姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar
Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar
[8] Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar
[9] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar
[10] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar
[11] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar
[12] Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar
[13] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[14] Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar
[15] Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar
[16] Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar
[17] McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar
[18] McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar
[19] Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar
[20] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar
[21] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar
[22] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar
[23] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[24] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar
[25] 姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar
Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar
[26] Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar
[27] McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar
Catalog
Metrics
- Abstract views: 7423
- PDF Downloads: 53
- Cited By: 0