Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state

Zhao Jia-Lin Cheng Kai Yu Xue-Ke Zhao Ji-Jun Su Yan

Citation:

Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state

Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan
PDF
HTML
Get Citation
  • Nitro explosive is a main type of energetic material which can release a large amount of energy when detonated under extreme conditions. Further study of the excited state dynamics of photo-induced nitro explosive can provide an effective method to understand the complex process of ultrafast detonation physics. In this paper, the initial step of photodissociation at the first excited electron state of some typical nitro explosives including nitromethane (NM), cyclotrimethylenetrinitramine (RDX) and triaminotrinitrobenzene (TATB) is studied using the time-dependent density functional theory and the molecular dynamic method. The transient structures of energetic molecules and time evolutions of excited energy levels are observed. It is found that the structural relaxation of energetic molecules occurs immediately after the electronic excitation, and the entire photoexcitation process comes into being within a range of 200 fs. At the same time, the positions of molecular energy levels change to various degrees with the oscillations of different frequencies, such as the overlap between HOMO and LUMO, which is related to the obvious change of molecular configuration, indicating that the energy of excited carriers transfers to atoms in the form of heat through electron-phonon coupling, and the energy is redistributed through vibration relaxation in the initial stage of photodissociation which causes the chemical bonds of C—H, N—N and N—N to rupture, and the hydrogen atoms dissociated from methyl, methylene or amino groups, and the nearest nitro group to form some new intermediate states. In this process, the energy levels near the excited electron and hole energy also change significantly with time, suggesting that the coupling between electron and electron also plays a role in the dissociation process. Comparing with NM and RDX, the evolution of the excited energy level of TATB has obvious lower-frequency (phonon frequency) oscillations, showing that the coupling between electronic state and phonon of TATB is weak and thus makes it more difficult to dissociate. Our study can deepen the understanding of the structural relaxation of excited states and the time evolution of excitation energy levels in energetic materials, and provide a new understanding of the photoinduced reaction and the initial steps of laser ignition in energetic materials.
      Corresponding author: Cheng Kai, chengkai_xiyou@163.com ; Su Yan, su.yan@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004303), the Challenge Project of Basic National Defense Research, China (Grant No. TZ2016001), and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT20ZD207)
    [1]

    Field J E 1992 Acc. Chem. Res. 25 489Google Scholar

    [2]

    Zhang S Q, Wang Y Q, Zheng X M 2006 Acta Phys-Chim Sin. 22 1489Google Scholar

    [3]

    Bhattacharya A, Guo Y, Bernstein E R 2010 Acc. Chem. Res. 43 1476Google Scholar

    [4]

    Fang X, McLuckie W G 2015 J. Hazard. Mater. 285 375Google Scholar

    [5]

    Gruzdkov Y A, Gupta Y M 1998 J. Phys. Chem. A 102 8325Google Scholar

    [6]

    Aduev B P, Nurmukhametov D R, Belokurov G M, Nelyubina N V, Kalenskii A V, Aluker N L 2017 Russ. J. Phys. Chem. B 11 460Google Scholar

    [7]

    Jordan M J T, Kable S H 2012 Science 335 1054Google Scholar

    [8]

    Spighi G, Gaveau MA, Mestdagh JM, Poisson L, Soep B 2014 Physi. Chem. Chem. Phys. 16 9610Google Scholar

    [9]

    Parada G A, Markle T F, Glover S D, Hammarstrom L, Ott S, Zietz B 2015 Chem. Eur. J 21 6362Google Scholar

    [10]

    Zhang W, Sang J, Cheng J, Ge S, Yuan S, Lo G V, Dou Y 2018 Molecules 23 1593Google Scholar

    [11]

    Rehwoldt M C, Wang H, Kline D J, Wu T, Eckman N, Wang P, Agrawal N R, Zachariah M R 2020 Combust. Flame 211 260Google Scholar

    [12]

    Cabalo J, Sausa R 2005 Appl. Optics 44 1084Google Scholar

    [13]

    Mattos E C, Diniz M F, Nakamura N M, Dutra R d C L 2009 J. Aerosp. Technol. Manag. 1 167Google Scholar

    [14]

    Rom N, Zybin S V, van Duin A C T, Goddard W A, III, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181Google Scholar

    [15]

    Blais N C, Engelke R, Sheffield S A 1997 J. Phys. Chem. A 101 8285Google Scholar

    [16]

    Citroni M, Bini R, Pagliai M, Cardini G, Schettino V 2010 J. Phys. Chem. B 114 9420Google Scholar

    [17]

    Kuklja M M, Aduev B P, Aluker E D, Krasheninin V I, Krechetov A G, Mitrofanov A Y 2001 J. Appl. Phys. 89 4156Google Scholar

    [18]

    Guo Y Q, Greenfield M, Bhattacharya A, Bernstein E R 2007 J. Chem. Phys. 127 154301Google Scholar

    [19]

    Owens F J, Sharma J 1980 J. Appl. Phys. 51 1494Google Scholar

    [20]

    Gares K L, Bykov S V, Brinzer T, Asher S A 2015 Appl. Spectrosc. 69 545Google Scholar

    [21]

    Tang T B, Chaudhri M M, Rees C S, Mullock S J 1987 J. Mater. Sci. 22 1037Google Scholar

    [22]

    Williams D L, Timmons J C, Woodyard J D, Rainwater K A, Lightfoot J M, Richardson B R, Burgess C E, Heh J L 2003 J. Phys. Chem. A 107 9491Google Scholar

    [23]

    Firsich D W 1984 J. Hazard. Mater. 9 133Google Scholar

    [24]

    Britt A D, Moniz W B, Chingas G C, Moore D W, Heller C A, Ko C L 1981 Propell. Explos. 6 94Google Scholar

    [25]

    Glascoe E A, Zaug J M, Armstrong M R, Crowhurst J C, Grant C D, Fried L E 2009 J. Phys. Chem. A 113 5881Google Scholar

    [26]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [27]

    Theilhaber J 1992 Phys. Rev. B 46 12990Google Scholar

    [28]

    Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A 2006 Phys. Status Solidi. B 243 2465Google Scholar

    [29]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [30]

    Polyak I, Hutton L, Crespo-Otero R, Barbatt M, Knowles P J 2019 J. Chem. theory Comput. 15 3929Google Scholar

    [31]

    Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. theory Comput. 12 466Google Scholar

    [32]

    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg A E, Tretiak S 2011 J. Phys. Chem. B 115 5402Google Scholar

    [33]

    Ghosh J, Gajapathy H, Konar A, Narasimhaiah G M, Bhattacharya A 2017 J. Chem. Phys. 147 204302Google Scholar

    [34]

    Myers T W, Bjorgaard J A, Brown K E, Chavez D E, Hanson S K, Scharff R J, Tretiak S, Veauthier J M 2016 J. Am. Chem. Soc. 138 4685Google Scholar

    [35]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys-Condens. Mat. 14 2745Google Scholar

    [36]

    Sugino O, Miyamoto Y 1999 Phys. Rev. B 59 2579Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 8861Google Scholar

    [40]

    Gorse D, Cavagnat D, Pesquer M, Lapouge C 1993 J. Phys. Chem. 97 4262Google Scholar

    [41]

    Choi C S, Mapes J E, Prince E 1972 Acta Crystallogr. B 28 1357Google Scholar

    [42]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485Google Scholar

    [43]

    Zhong M, Liu Q-J, Qin H, Jiao Z, Zhao F, Shang H-L, Liu F-S, Liu Z-T 2017 Eur. Phys. J. B 90 115Google Scholar

    [44]

    Fan J, Su Y, Zheng Z, Zhang Q, Zhao J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [45]

    Su Y, Fan J, Zheng Z, Zhao J, Song H 2018 Chin. Phys. B 27 056401Google Scholar

    [46]

    Flicker W M, Mosher O A, Kuppermann A 1979 Chem. Phys. Lett. 60 518Google Scholar

    [47]

    Whitley V H 2006 AIP Conf. Proc. 845 1357Google Scholar

    [48]

    Kakar S, Nelson A J, Treusch R, Heske C, van Buuren T, Jimenez I, Pagoria P, Terminello L J 2000 Phys. Rev. B 62 15666Google Scholar

    [49]

    Zhang W, Shen R, Ye Y, Wu L, Hu Y, Zhu P 2014 Spectrosc. Lett. 47 611Google Scholar

    [50]

    Nelson T, Bjorgaard J, Greenfield M, Bolme C, Brown K, McGrane S, Scharff R J, Tretiak S 2016 J. Phys. Chem. A 120 519Google Scholar

  • 图 1  基态含能分子结构示意图 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB); 其中蓝色为N原子, 红色为O原子, 棕色为C原子, 白色为H原子

    Figure 1.  Structure diagrams of (a) nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB) at ground state. Blue ball is N atom, red ball is O atom, brown ball is C atom, and white ball is H atom.

    图 2  三种含能分子的基态轨道能级排布及最高占据态轨道(HOMO)与最低非占据态轨道(LUMO)的电荷密度分布图 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)

    Figure 2.  The ground state molecular orbital (MO) energy levels and charge density of the highest occupied state orbitals and the lowest unoccupied state orbitals of (a) nitromethane (NM), (b) cyclotrimethylenetrinitramine (RDX), (c) triaminotrinitrobenzene (TATB).

    图 3  (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)在300 K时光致激发后分子结构随时间演化示意图

    Figure 3.  Time evolution of molecular structure at 300 K for (a) nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB).

    图 4  分子部分键长随时间的演化 (a) 硝基甲烷(NM); (b) 环三亚甲基三硝胺(RDX); (c) 三氨基三硝基苯(TATB)

    Figure 4.  Time evolution of bond lengths: (a) Nitromethane (NM); (b) cyclotrimethylenetrinitramine (RDX); (c) triaminotrinitrobenzene (TATB).

    图 5  分子轨道能级随时间的演化图 (a) 硝基甲烷(NM)分子HOMO, LUMO能级演化; (b), (c) 环三亚甲基三硝胺(RDX)分子HOMO, LUMO及其附近能级演化; (d) 三氨基三硝基苯(TATB)分子HOMO, LUMO能级演化. 绿色实线为最高占据态轨道, 对应激发空穴所在能级, 红色实线为最低非占据态轨道, 对应激发电子所在能级, 灰色实线为附近的其他能级

    Figure 5.  Time evolution of excited energy level: (a) HOMO and LUMO of Nitromethane (NM); (b), (c) HOMO, LUMO and nearby orbitals of cyclotrimethylenetrinitramine (RDX); (d) HOMO and LUMO of Triaminotrinitrobenzene (TATB). Green solid line denotes the highest occupied molecular orbit corresponding to the excited hole, red solid line denotes the lowest unoccupied molecular orbit corresponding to the excited electron, gray solid lines denote other molecular orbit.

    表 1  三种含能分子基态的键长信息

    Table 1.  Bond lengths of energetic molecules at ground state

    NMC—NC—H1C—H2C—H3N—O1N—O2
    Length/ÅThis work1.5471.0961.0991.0991.1481.157
    Exp.[40]1.4811.0931.0921.0921.2231.224
    RDXC—NN1—N2N3—N4N5—N6C1—H1C1—H2
    Length/ÅThis work1.4431.4431.4711.4721.1821.183
    Exp.[41]1.4641.3511.3521.3981.0851.087
    TATBC—CC—NnitroC—NaminoN—ON—HO···H
    Length/ÅThis work1.4251.4361.3181.2161.0211.646
    Exp.[42]1.4411.4421.3161.2430.9251.780
    DownLoad: CSV

    表 2  300 K与0 K下RDX和TATB的键角对比

    Table 2.  Bond angles of RDX and TATB under 300 K and compared with 0 K

    RDXAngle/(°)TATBAngle/(°)
    0 K300 KChange0 K300 KChange
    α1113.7112.1–1.6θ118.6119.2+0.6
    α2114.8109.8–5.0 γ1179.9173.3–6.6
    δ140.6135.1–5.5γ2179.1174.4–4.7
    DownLoad: CSV
  • [1]

    Field J E 1992 Acc. Chem. Res. 25 489Google Scholar

    [2]

    Zhang S Q, Wang Y Q, Zheng X M 2006 Acta Phys-Chim Sin. 22 1489Google Scholar

    [3]

    Bhattacharya A, Guo Y, Bernstein E R 2010 Acc. Chem. Res. 43 1476Google Scholar

    [4]

    Fang X, McLuckie W G 2015 J. Hazard. Mater. 285 375Google Scholar

    [5]

    Gruzdkov Y A, Gupta Y M 1998 J. Phys. Chem. A 102 8325Google Scholar

    [6]

    Aduev B P, Nurmukhametov D R, Belokurov G M, Nelyubina N V, Kalenskii A V, Aluker N L 2017 Russ. J. Phys. Chem. B 11 460Google Scholar

    [7]

    Jordan M J T, Kable S H 2012 Science 335 1054Google Scholar

    [8]

    Spighi G, Gaveau MA, Mestdagh JM, Poisson L, Soep B 2014 Physi. Chem. Chem. Phys. 16 9610Google Scholar

    [9]

    Parada G A, Markle T F, Glover S D, Hammarstrom L, Ott S, Zietz B 2015 Chem. Eur. J 21 6362Google Scholar

    [10]

    Zhang W, Sang J, Cheng J, Ge S, Yuan S, Lo G V, Dou Y 2018 Molecules 23 1593Google Scholar

    [11]

    Rehwoldt M C, Wang H, Kline D J, Wu T, Eckman N, Wang P, Agrawal N R, Zachariah M R 2020 Combust. Flame 211 260Google Scholar

    [12]

    Cabalo J, Sausa R 2005 Appl. Optics 44 1084Google Scholar

    [13]

    Mattos E C, Diniz M F, Nakamura N M, Dutra R d C L 2009 J. Aerosp. Technol. Manag. 1 167Google Scholar

    [14]

    Rom N, Zybin S V, van Duin A C T, Goddard W A, III, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181Google Scholar

    [15]

    Blais N C, Engelke R, Sheffield S A 1997 J. Phys. Chem. A 101 8285Google Scholar

    [16]

    Citroni M, Bini R, Pagliai M, Cardini G, Schettino V 2010 J. Phys. Chem. B 114 9420Google Scholar

    [17]

    Kuklja M M, Aduev B P, Aluker E D, Krasheninin V I, Krechetov A G, Mitrofanov A Y 2001 J. Appl. Phys. 89 4156Google Scholar

    [18]

    Guo Y Q, Greenfield M, Bhattacharya A, Bernstein E R 2007 J. Chem. Phys. 127 154301Google Scholar

    [19]

    Owens F J, Sharma J 1980 J. Appl. Phys. 51 1494Google Scholar

    [20]

    Gares K L, Bykov S V, Brinzer T, Asher S A 2015 Appl. Spectrosc. 69 545Google Scholar

    [21]

    Tang T B, Chaudhri M M, Rees C S, Mullock S J 1987 J. Mater. Sci. 22 1037Google Scholar

    [22]

    Williams D L, Timmons J C, Woodyard J D, Rainwater K A, Lightfoot J M, Richardson B R, Burgess C E, Heh J L 2003 J. Phys. Chem. A 107 9491Google Scholar

    [23]

    Firsich D W 1984 J. Hazard. Mater. 9 133Google Scholar

    [24]

    Britt A D, Moniz W B, Chingas G C, Moore D W, Heller C A, Ko C L 1981 Propell. Explos. 6 94Google Scholar

    [25]

    Glascoe E A, Zaug J M, Armstrong M R, Crowhurst J C, Grant C D, Fried L E 2009 J. Phys. Chem. A 113 5881Google Scholar

    [26]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [27]

    Theilhaber J 1992 Phys. Rev. B 46 12990Google Scholar

    [28]

    Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A 2006 Phys. Status Solidi. B 243 2465Google Scholar

    [29]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [30]

    Polyak I, Hutton L, Crespo-Otero R, Barbatt M, Knowles P J 2019 J. Chem. theory Comput. 15 3929Google Scholar

    [31]

    Kolesov G, Granas O, Hoyt R, Vinichenko D, Kaxiras E 2016 J. Chem. theory Comput. 12 466Google Scholar

    [32]

    Nelson T, Fernandez-Alberti S, Chernyak V, Roitberg A E, Tretiak S 2011 J. Phys. Chem. B 115 5402Google Scholar

    [33]

    Ghosh J, Gajapathy H, Konar A, Narasimhaiah G M, Bhattacharya A 2017 J. Chem. Phys. 147 204302Google Scholar

    [34]

    Myers T W, Bjorgaard J A, Brown K E, Chavez D E, Hanson S K, Scharff R J, Tretiak S, Veauthier J M 2016 J. Am. Chem. Soc. 138 4685Google Scholar

    [35]

    Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys-Condens. Mat. 14 2745Google Scholar

    [36]

    Sugino O, Miyamoto Y 1999 Phys. Rev. B 59 2579Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 8861Google Scholar

    [40]

    Gorse D, Cavagnat D, Pesquer M, Lapouge C 1993 J. Phys. Chem. 97 4262Google Scholar

    [41]

    Choi C S, Mapes J E, Prince E 1972 Acta Crystallogr. B 28 1357Google Scholar

    [42]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485Google Scholar

    [43]

    Zhong M, Liu Q-J, Qin H, Jiao Z, Zhao F, Shang H-L, Liu F-S, Liu Z-T 2017 Eur. Phys. J. B 90 115Google Scholar

    [44]

    Fan J, Su Y, Zheng Z, Zhang Q, Zhao J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [45]

    Su Y, Fan J, Zheng Z, Zhao J, Song H 2018 Chin. Phys. B 27 056401Google Scholar

    [46]

    Flicker W M, Mosher O A, Kuppermann A 1979 Chem. Phys. Lett. 60 518Google Scholar

    [47]

    Whitley V H 2006 AIP Conf. Proc. 845 1357Google Scholar

    [48]

    Kakar S, Nelson A J, Treusch R, Heske C, van Buuren T, Jimenez I, Pagoria P, Terminello L J 2000 Phys. Rev. B 62 15666Google Scholar

    [49]

    Zhang W, Shen R, Ye Y, Wu L, Hu Y, Zhu P 2014 Spectrosc. Lett. 47 611Google Scholar

    [50]

    Nelson T, Bjorgaard J, Greenfield M, Bolme C, Brown K, McGrane S, Scharff R J, Tretiak S 2016 J. Phys. Chem. A 120 519Google Scholar

  • [1] Liu Xiao-Jun, Yang Xue. Mechanism of fluorescence enhancement of HClO detected by excited-state intramolecular proton transfer based HBT-OMe molecule. Acta Physica Sinica, 2023, 72(11): 113101. doi: 10.7498/aps.72.20222313
    [2] Wang Xiao-Li,  Yao Guan-Xin,  Yang Xin-Yan,  Qin Zheng-Bo,  Zheng Xian-Feng,  Cui Zhi-Feng. Experimental investigation on ultraviolet multiphoton dissociation dynamics of methylamine. Acta Physica Sinica, 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [3] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [4] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] Qin Chao-Chao, Huang Yan, Peng Yu-Feng. Photodissociation dynamics of Br2 in wavelength range of 360-610 nm. Acta Physica Sinica, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [7] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [8] Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing. Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [9] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] Zhang Lai-Bin, Ren Ting-Qi. Theoretical study of the ground and excited state properties of newly designed size-expanded adenine analogue x-adenine. Acta Physica Sinica, 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [12] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [13] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [14] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] Wang Zhong, Zhang Li-Min, Wang Feng, Li Jiang, Yu Shu-Qin. Study on the photofragment excitation spectrum of SO+2 in the range of 281-332nm. Acta Physica Sinica, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [18] Xu Hai-Feng, Liu Shi-Lin, Ma Xing-Xiao, Dai Dong-Xu, Xie Jin-Chun, Sha Guo-He. . Acta Physica Sinica, 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [19] ZHANG JIE, CHENG BING-YING, ZHANG DAO-ZHONG, WANG LI-HUA, ZHAO YU-YING, WANG TIAN-JUAN. PHOTODISSOCIATION OF PbCl2. Acta Physica Sinica, 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] LIN JIN-GU, SU YANG, SHAN JUN, YANG JUN-HUI, FU KE-JIAN. ULTRAFINE POWDERS PRODUCED BY U-V LASER PHOTOLYS OF IRON PENTACARBONYL. Acta Physica Sinica, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
Metrics
  • Abstract views:  3814
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2021
  • Accepted Date:  11 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回