Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photodissociation dynamics of Br2 in wavelength range of 360-610 nm

Qin Chao-Chao Huang Yan Peng Yu-Feng

Citation:

Photodissociation dynamics of Br2 in wavelength range of 360-610 nm

Qin Chao-Chao, Huang Yan, Peng Yu-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We study the photodissociation of Br2 in a wavelength range from 360 nm to 610 nm in the near-visible UV continuum band based on the calculation of time-dependent quantum wave packet including the rotational degree of freedom. We calculate four representative samples of two-dimensional (2D) slice images taken from photolysis of Br2 molecules, in which the different rings in the 2D slice images are corresponding to the different photodissiation channels. The radius of each 2D slice image ring is positively related to kinetic energy of photofragment. The maximum photofragment flux perpendicular or parallel to the photolysis polarization is also related to photodissiation channel. Furthermore, we calculate the total kinetic energy distribution P(E) and the P(E) distribution from the respective electronic excited states A, B and C in the wavelength range of 360-610 nm, from which we find that the wavelengths corresponding to the maximum dissociation probability from respective electronic excited states A, B and C are 510 nm, 469 nm, and 388 nm, respectively. As is well known, not only the total dissociation probability, but also the respective dissociation probability of electronic excited states is dependent on the laser wavelength. We also calculate the dissociation probabilities from electronic excited states A, B and C, respectively. We find that the dissociation probability of electronic excited state A is not significant when 480 nm and that the peak intensity of the dissociation probability to the A state is about 13.0\% of that to the C state, while that to the B state is about 43.4\%. In addition, because the electronic excited states A and C are related to the photodissociation channel Br + Br, and the electronic excited state B is corresponding to the photodissociation channel Br + Br*, the images which reveal the involvement of more than one product channel can be analyzed by the respective channel branching ratios. At the short wavelength ( 400 nm) the branching ratio (Br*/(Br+Br*)) is small, even near to zero, which reflects that electronic state C transition gives rise to many Br + Br over Br + Br*. However, within the wavelength range (=440-500 nm) Br + Br* photofragments are excess of Br + Br, so the electronic state B transition is dominant. At longer wavelength ( 530 nm) the branching ratio (Br*/(Br+Br*)) is also low, near to zero, indicating the prevalence of electronic state A transition. Ignoring the dissociation from electronic state C, the maximum dissociation probability 469 nm is consistent with branching ratio maximum 462 nm. Because the electronic excited state C is related to the photodissociation channel Br + Br, the branching ratio will be reduced. So the maximum wavelength of branching ratio is blue shifted.
      Corresponding author: Qin Chao-Chao, qinch@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404112, 11404411), the Advanced Technology Research Program of Henan Province, China (Grant Nos. 142102310274, 172102210340), and the Foundation for Key Program of Education Department of Henan Province, China (Grant No. 17A140021).
    [1]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [2]

    Ashfold M N R, Baggott J E https://doi.org/10.1002/jps.2600780520 1989 Molecular Photodissociation Dynamics (Letchorth:Wiley Press) p243

    [3]

    Demyanenko A V, Potter A B, Dribinski V, Reisler H 2002 J. Chem. Phys. 117 2568

    [4]

    Rakitzis T P, Kitsopoulos T N 2002 J. Chem. Phys 116 9228

    [5]

    Nugent-Glandorf L, Scheer M, Samuels D A, Mulhisen A M, Grant E R, Yang X M, Bierbaum V M, Leone S R https://doi.org/10.1103/PhysRevLett.87.193002 2001 Phys. Rev. Lett. 87 1103

    [6]

    Nugent-Glandorf L, Scheer M, Samuels D A, Bierbaum V M, Leone S R 2002 J. Chem. Phys. 117 1063

    [7]

    Klemm A, Kimmich R, Weber M 2001 Phys. Rev. E 63 041514

    [8]

    Han S I, Pierce K L, Pines A 2006 Phys. Rev. E 74 016302

    [9]

    Rogers L J, Ashfold M N R, Matsumi Y, Kawasaki M Whitaker B J 1996 Chem. Phys. Lett. 258 159

    [10]

    Beckert M, Greaves S J, Ashfold M N R 2003 Phys. Chem. Chem. Phys. 5 308

    [11]

    Kato H, Baba M 1995 Chem. Rev. 95 2311

    [12]

    Asano Y, Yabushita S 2003 Chem. Phys. Lett. 372 348

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Zhang J, Zhang S A, Yang Y, Sun S Z, Wu H, Li J, Chen Y T, Jia T Q, Wang Z G, Kong F N, Sun Z R 2014 Phys. Rev. A 90 053428

    [15]

    Kettunen J A, Sankari A, Partanen L, Urpelainen S, Kivimki A, Huttula M 2012 Phys. Rev. A 85 062703

    [16]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese)[刘玉柱, 陈云云, 郑改革, 金峰, Knopp Gregor 2016 物理学报 65 053302]

    [17]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese)[刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Knopp Gregor 2016 物理学报 65 113301]

    [18]

    Liu Y Z, Deng X L, Li S, Guan Y, Li J, Long J Y, Zhang B 2016 Acta Phys. Sin. 65 193301 (in Chinese)[刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 193301]

    [19]

    Liu Y Z, Long J Y, Xu L X, Zhang X Y, Zhang B 2017 Chin. Phys. Lett. 34 033301

    [20]

    Orr-Ewing A J 2015 Ann. Rev. Phys. Chem. 66 119

    [21]

    Orlando J J, Burkholder J B 1995 J. Phys. Chem. 99 1143

    [22]

    Tellinghuisen J 2001 J. Chem. Phys. 115 10417

    [23]

    Gomes J D, Gargano R, Martins J B L, de Macedo L G M https://doi.org/10.1021/jp4114283 2014 J. Phys. Chem. A 118 5818

    [24]

    Focsa C, Li H, Bernath P F 2000 J. Mol. Spectrosc. 200 104

    [25]

    Yukiya T, Nishimiya N, Samejima Y, Yamaguchi K, Suzuki M, Boone C D, Ozier I, Le Roy R J 2013 J. Mol. Spectrosc. 283 32

    [26]

    Jung Y J, Park M S, Kim Y S, Jung K H 1999 J. Chem. Phys. 111 4005

    [27]

    Kim T K, Park M S, Lee K W, Jung K H 2001 J. Chem. Phys. 115 10745

    [28]

    Zhu R S, Tang B F, Zhang X, Zhang B 2010 J. Phys. Chem. A 114 6188

    [29]

    Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303

    [30]

    Numico R, Keller A, Atabek O 1995 Phys. Rev. A 52 1298

    [31]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845

    [32]

    Jolicard G, Billing G D 1991 Chem. Phys. 149 261

    [33]

    Marston C C, Balintkurti G G 1989 J. Chem. Phys. 91 3571

    [34]

    Willner K, Dulieu O, Masnou-Seeuwsa F 2004 J. Chem. Phys. 120 548

    [35]

    Bandrauk A D, Shen H 1993 J. Chem. Phys. 99 1185

    [36]

    Chu T S, Zhang Y, Han K L 2010 Int. Rev. Phys. Chem. 25 201

  • [1]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [2]

    Ashfold M N R, Baggott J E https://doi.org/10.1002/jps.2600780520 1989 Molecular Photodissociation Dynamics (Letchorth:Wiley Press) p243

    [3]

    Demyanenko A V, Potter A B, Dribinski V, Reisler H 2002 J. Chem. Phys. 117 2568

    [4]

    Rakitzis T P, Kitsopoulos T N 2002 J. Chem. Phys 116 9228

    [5]

    Nugent-Glandorf L, Scheer M, Samuels D A, Mulhisen A M, Grant E R, Yang X M, Bierbaum V M, Leone S R https://doi.org/10.1103/PhysRevLett.87.193002 2001 Phys. Rev. Lett. 87 1103

    [6]

    Nugent-Glandorf L, Scheer M, Samuels D A, Bierbaum V M, Leone S R 2002 J. Chem. Phys. 117 1063

    [7]

    Klemm A, Kimmich R, Weber M 2001 Phys. Rev. E 63 041514

    [8]

    Han S I, Pierce K L, Pines A 2006 Phys. Rev. E 74 016302

    [9]

    Rogers L J, Ashfold M N R, Matsumi Y, Kawasaki M Whitaker B J 1996 Chem. Phys. Lett. 258 159

    [10]

    Beckert M, Greaves S J, Ashfold M N R 2003 Phys. Chem. Chem. Phys. 5 308

    [11]

    Kato H, Baba M 1995 Chem. Rev. 95 2311

    [12]

    Asano Y, Yabushita S 2003 Chem. Phys. Lett. 372 348

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Zhang J, Zhang S A, Yang Y, Sun S Z, Wu H, Li J, Chen Y T, Jia T Q, Wang Z G, Kong F N, Sun Z R 2014 Phys. Rev. A 90 053428

    [15]

    Kettunen J A, Sankari A, Partanen L, Urpelainen S, Kivimki A, Huttula M 2012 Phys. Rev. A 85 062703

    [16]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese)[刘玉柱, 陈云云, 郑改革, 金峰, Knopp Gregor 2016 物理学报 65 053302]

    [17]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese)[刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Knopp Gregor 2016 物理学报 65 113301]

    [18]

    Liu Y Z, Deng X L, Li S, Guan Y, Li J, Long J Y, Zhang B 2016 Acta Phys. Sin. 65 193301 (in Chinese)[刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 193301]

    [19]

    Liu Y Z, Long J Y, Xu L X, Zhang X Y, Zhang B 2017 Chin. Phys. Lett. 34 033301

    [20]

    Orr-Ewing A J 2015 Ann. Rev. Phys. Chem. 66 119

    [21]

    Orlando J J, Burkholder J B 1995 J. Phys. Chem. 99 1143

    [22]

    Tellinghuisen J 2001 J. Chem. Phys. 115 10417

    [23]

    Gomes J D, Gargano R, Martins J B L, de Macedo L G M https://doi.org/10.1021/jp4114283 2014 J. Phys. Chem. A 118 5818

    [24]

    Focsa C, Li H, Bernath P F 2000 J. Mol. Spectrosc. 200 104

    [25]

    Yukiya T, Nishimiya N, Samejima Y, Yamaguchi K, Suzuki M, Boone C D, Ozier I, Le Roy R J 2013 J. Mol. Spectrosc. 283 32

    [26]

    Jung Y J, Park M S, Kim Y S, Jung K H 1999 J. Chem. Phys. 111 4005

    [27]

    Kim T K, Park M S, Lee K W, Jung K H 2001 J. Chem. Phys. 115 10745

    [28]

    Zhu R S, Tang B F, Zhang X, Zhang B 2010 J. Phys. Chem. A 114 6188

    [29]

    Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303

    [30]

    Numico R, Keller A, Atabek O 1995 Phys. Rev. A 52 1298

    [31]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845

    [32]

    Jolicard G, Billing G D 1991 Chem. Phys. 149 261

    [33]

    Marston C C, Balintkurti G G 1989 J. Chem. Phys. 91 3571

    [34]

    Willner K, Dulieu O, Masnou-Seeuwsa F 2004 J. Chem. Phys. 120 548

    [35]

    Bandrauk A D, Shen H 1993 J. Chem. Phys. 99 1185

    [36]

    Chu T S, Zhang Y, Han K L 2010 Int. Rev. Phys. Chem. 25 201

  • [1] Xing Ye, Li Na, Yang Ling-Bin, Hu Xiao-Hui. Production of single charm pentaquark based on molecular configuration. Acta Physica Sinica, 2024, 73(13): 131401. doi: 10.7498/aps.73.20240447
    [2] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [4] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] Li Qiong, Shen Li, Yan Jun-Gang, Dai Chang-Jian, Yang Yu-Na. Dynamic properties of Eu 4f76p1/2ns autoionization process. Acta Physica Sinica, 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [6] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [7] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [8] Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing. Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [9] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] Liu Yu-Zhu, Xiao Shao-Rong, Zhang Cheng-Yi, Zheng Gai-Ge, Chen Yun-Yun. Calibration of velocity map imaging system and photodissociation dynamics of 1, 4-C4H8BrCl. Acta Physica Sinica, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [12] Zhang Bing-Xin, Liu Xiao-Jing, Zhang Bai-Jun, Hua Zhong, Xiao Li, Liu Bing, Wu Yi-Heng, Wang Qing-Cai, Wang Yan. Research on branching ratio of B0→π-l+ν l decay. Acta Physica Sinica, 2011, 60(4): 041301. doi: 10.7498/aps.60.041301
    [13] Han Li-Li, Dai Zhen-Wen, Wang Yun-Peng, Jiang Zhan-Kui. Measurement of branching ratios of Pd I. Acta Physica Sinica, 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [14] Li Rui, Yan Bing, Zhao Shu-Tao, Guo Qing-Qun, Lian Ke-Yan, Tian Chuan-Jin, Pan Shou-Fu. Spin-orbit ab initio calculation of photodissociation of methyl iodide. Acta Physica Sinica, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [16] Wu Xiang-Yao, Gong Pi-Feng, Su Xi-Yu, Liu Xiao-Jing, Fan Xi-Hui, Wang Li, Shi Zong-Hua, Guo Yi-Qing. Research on D→Klv~l decay. Acta Physica Sinica, 2006, 55(7): 3375-3379. doi: 10.7498/aps.55.3375
    [17] Wu Xiang-Yao, Yin Xin-Guo, Guo Yi-Qing, Zhang Xiao-Bo, Yin Jian-Hua, Xie Yuan-Liang. Research on B0→K0π0 decay. Acta Physica Sinica, 2004, 53(4): 1015-1019. doi: 10.7498/aps.53.1015
    [18] Wang Zhong, Zhang Li-Min, Wang Feng, Li Jiang, Yu Shu-Qin. Study on the photofragment excitation spectrum of SO+2 in the range of 281-332nm. Acta Physica Sinica, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] ZHANG JIE, CHENG BING-YING, ZHANG DAO-ZHONG, WANG LI-HUA, ZHAO YU-YING, WANG TIAN-JUAN. PHOTODISSOCIATION OF PbCl2. Acta Physica Sinica, 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] LIN JIN-GU, SU YANG, SHAN JUN, YANG JUN-HUI, FU KE-JIAN. ULTRAFINE POWDERS PRODUCED BY U-V LASER PHOTOLYS OF IRON PENTACARBONYL. Acta Physica Sinica, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
Metrics
  • Abstract views:  5733
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2017
  • Accepted Date:  05 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回