-
Effcient and high-fidelity two-qubit gates are crucial to achieving fault-tolerant quantum computing and are one of the key research topics in the field of quantum computing. The fidelity of quantum gates is affected by many factors, such as quantum chip parameters and control waveforms. In theory, the chip paramters and waveforms are precisely designed. However, in practice the actual chip parameters and waveforms may deviate from the theoretical values. It is necessary to systematically study the impact of chip parameters, control waveforms and other factors on the fidelity of two-qubit gates, and identify the magnitude and direction of the impact of each factor on the fidelity of quantum gates. Here, we systematically studies the effects of chip parameters, control waveforms, coupler start frequency, qubit frequency, etc., on the fidelity of CZ gates. On this basis, the response of gate fidelity to control parameters deviation is further studied. At the chip design level, quantum chips based on CBQ parameters can achieve higher-fidelity CZ gates in shorter gate operation time. In terms of controlling waveforms, threelevel Fourier series wave is superior to the square wave and rounded trapezoidal wave in terms of gate error rate and gate operation time, and can better meet the requirements for effcient implementation of high-fidelity quantum gates. Factors such as the coupler starting frequency and qubit frequency have relatively little effect on the fidelity of the CZ gate. In a wide frequency range, high-fidelity CZ gates can always be achieved by optimizing the control waveform parameters. It is important to point out that slight deviations in control parameters will lead to a significant increase in the gate error. This study is of great significance for clarifying the impact of various factors on the fidelity of the CZ gate. It can provide theoretical and technical support for the design of superconducting quantum chips and the realization of high-fidelity CZ gate, and promote the engineering development of quantum computing.
-
Keywords:
- Quantum Computing /
- Quantum Gates /
- Quantum Control /
- Fidelity
-
[1] Easttom C 2022 Modern Cryptography: Applied Mathematics for Encryption and Information Security (Cham: Springer International Publishing) pp397–407
[2] Hossain Faruk M J, Tahora S, Tasnim M, Shahriar H, Sakib N 2022 2022 1st International Conference on AI in Cybersecurity Victoria, TX, USA, May 24-26, 2022 p1
[3] Cavaliere F, Mattsson J, Smeets B 2020 Network Security 2020 9
[4] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195
[5] Wang Y, Liu J 2024 Rep. Prog. Phys. 87 116402
[6] Lanyon B P, Whitfield J D, Gillett G G, Goggin M E, Almeida M P, Kassal I, Biamonte J D, Mohseni M, Powell B J, Barbieri M, Aspuru-Guzik A, White A G 2010 Nat. Chem. 2 106
[7] Cao Y, Romero J, Olson J P, Degroote M, Johnson P D, Kieferová M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A 2019 Chem. Rev. 119 10856
[8] Orús R, Mugel S, Lizaso E 2019 Rev. Phys. 4 100028
[9] Herman D, Googin C, Liu X, Sun Y, Galda A, Safro I, Pistoia M, Alexeev Y 2023 Nat. Rev. Phys. 5 450
[10] Egger D J, Gambella C, Marecek J, McFaddin S, Mevissen M, Raymond R, Simonetto A, Woerner S, Yndurain E 2020 IEEE Transactions on Quantum Engineering 1 1
[11] Preskill J 2018 Quantum 2 79
[12] Aharonov D, Ben-Or M 2008 Siam J Comput. 38 1207
[13] Knill E, Laflamme R, Zurek W H 1998 Science 279 342
[14] Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C, Wallraff A 2022 Nature 605 669
[15] Zhao Y, Ye Y, Huang H L, Zhang Y, Wu D, Guan H, Zhu Q, Wei Z, He T, Cao S, Chen F, Chung T H, Deng H, Fan D, Gong M, Guo C, Guo S, Han L, Li N, Li S, Li Y, Liang F, Lin J, Qian H, Rong H, Su H, Sun L, Wang S, Wu Y, Xu Y, Ying C, Yu J, Zha C, Zhang K, Huo Y H, Lu C Y, Peng C Z, Zhu X, Pan J W 2022 Phys. Rev. Lett. 129 030501
[16] Google Quantum AI 2023 Nature 614 676
[17] Gupta R S, Sundaresan N, Alexander T, Wood C J, Merkel S T, Healy M B, Hillenbrand M, JochymO’Connor T, Wootton J R, Yoder T J, Cross A W, Takita M, Brown B J 2024 Nature 625 259
[18] Brock B L, Singh S, Eickbusch A, Sivak V V, Ding A Z, Frunzio L, Girvin S M, Devoret M H 2025 Nature 641 612
[19] Babbush R, McClean J R, Newman M, Gidney C, Boixo S, Neven H 2021 PRX Quantum 2 010103
[20] Litinski D 2019 Quantum 3 128
[21] Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324
[22] Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320
[23] O’ Brien T E, Tarasinski B, DiCarlo L 2017 npj Quantum Inf. 3 39
[24] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504
[25] Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, Chen K, Chen X, Chen X, Chen Z, Chen Z, Chen Z, Chu W, Deng H, Deng Z, Ding P, Ding X, Ding Z, Dong S, Dong Y, Fan B, Fu Y, Gao S, Ge L, Gong M, Gui J, Guo C, Guo S, Guo X, Han L, He T, Hong L, Hu Y, Huang H L, Huo Y H, Jiang T, Jiang Z, Jin H, Leng Y, Li D, Li D, Li F, Li J, Li J, Li J, Li J, Li N, Li S, Li W, Li Y, Li Y, Liang F, Liang X, Liao N, Lin J, Lin W, Liu D, Liu H, Liu M, Liu X, Liu X, Liu Y, Lou H, Ma Y, Meng L, Mou H, Nan K, Nie B, Nie M, Ning J, Niu L, Peng W, Qian H, Rong H, Rong T, Shen H, Shen Q, Su H, Su F, Sun C, Sun L, Sun T, Sun Y, Tan Y, Tan J, Tang L, Tu W, Wan C, Wang J, Wang B, Wang C, Wang C, Wang C, Wang J, Wang L, Wang R, Wang S, Wang X, Wang X, Wang X, Wang Y, Wei Z, Wei J, Wu D, Wu G, Wu J, Wu S, Wu Y, Xie S, Xin L, Xu Y, Xue C, Yan K, Yang W, Yang X, Yang Y, Ye Y, Ye Z, Ying C, Yu J, Yu Q, Yu W, Zeng X, Zhan S, Zhang F, Zhang H, Zhang K, Zhang P, Zhang W, Zhang Y, Zhang Y, Zhang L, Zhao G, Zhao P, Zhao X, Zhao X, Zhao Y, Zhao Z, Zheng L, Zhou F, Zhou L, Zhou N, Zhou N, Zhou S, Zhou S, Zhou Z, Zhu C, Zhu Q, Zou G, Zou H, Zhang Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2025 Phys. Rev. Lett. 134 090601
[26] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318
[27] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240
[28] Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D, Esteve D 2012 Phys. Rev. Lett. 108 057002
[29] Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H, Yu Y 2020 Phys. Rev. Lett. 125 200503
[30] Barends R, Quintana C M, Petukhov A G, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F, Arya K, Buell D, Burkett B, Chen Z, Chiaro B, Dunsworth A, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Huang T, Jeffrey E, Kelly J, Klimov P V, Kostritsa F, Landhuis D, Lucero E, McEwen M, Megrant A, Mi X, Mutus J, Neeley M, Neill C, Ostby E, Roushan P, Sank D, Satzinger K J, Vainsencher A, White T, Yao J, Yeh P, Zalcman A, Neven H, Smelyanskiy V N, Martinis J M 2019 Phys. Rev. Lett. 123 210501
[31] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O’Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, Martinis J M 2014 Phys. Rev. Lett. 113 220502
[32] Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M 2020 Phys. Rev. Lett. 125 120504
[33] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, Oliver W D 2018 Phys. Rev. Appl. 10 054062
[34] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L 2020 Phys. Rev. Appl. 14 024070
[35] Sete E A, Chen A Q, Manenti R, Kulshreshtha S, Poletto S 2021 Phys. Rev. Appl. 15 064063
[36] Setiawan F, Groszkowski P, Clerk A A 2023 Phys. Rev. Appl. 19 034071
[37] Møller D, Madsen L B, Mølmer K 2008 Phys. Rev. Lett. 100 170504
[38] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443
[39] Chow J M, Gambetta J M, Cross A W, Merkel S T, Rigetti C, Steffen M 2013 New J. Phys. 15 115012
[40] Rigetti C, Devoret M 2010 Phys. Rev. B 81 134507
[41] Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Córcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C, Steffen M 2012 Phys. Rev. Lett. 109 240505
[42] Caldwell S A, Didier N, Ryan C A, Sete E A, Hudson A, Karalekas P, Manenti R, da Silva M P, Sinclair R, Acala E, Alidoust N, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, Bouayadi T E, Girshovich D, Hong S, Kuang K, Lenihan M, Manning T, Marchenkov A, Marshall J, Maydra R, Mohan Y, O’Brien W, Osborn C, Otterbach J, Papageorge A, Paquette J P, Pelstring M, Polloreno A, Prawiroatmodjo G, Rawat V, Reagor M, Renzas R, Rubin N, Russell D, Rust M, Scarabelli D, Scheer M, Selvanayagam M, Smith R, Staley A, Suska M, Tezak N, Thompson D C, To T W, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti C 2018 Phys. Rev. Appl. 10 034050
[43] Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M, Chow J M 2016 Phys. Rev. Lett. 117 250502
[44] Pedersen L H, Møller N M, Mølmer K 2007 Phys. Lett. A 367 47
[45] Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111
[46] Chu J, Yan F 2021 Phys. Rev. Appl. 16 054020
Metrics
- Abstract views: 58
- PDF Downloads: 2
- Cited By: 0