Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comprehensive study of the effects of chip parameters and control waveforms on the fidelity of CZ gate

WANG Shi ZHENG Yan HOU Jie YE Yongjin JI Yang WU Yongzheng

Citation:

Comprehensive study of the effects of chip parameters and control waveforms on the fidelity of CZ gate

WANG Shi, ZHENG Yan, HOU Jie, YE Yongjin, JI Yang, WU Yongzheng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Effcient and high-fidelity two-qubit gates are crucial to achieving fault-tolerant quantum computing and are one of the key research topics in the field of quantum computing. The fidelity of quantum gates is affected by many factors, such as quantum chip parameters and control waveforms. In theory, the chip paramters and waveforms are precisely designed. However, in practice the actual chip parameters and waveforms may deviate from the theoretical values. It is necessary to systematically study the impact of chip parameters, control waveforms and other factors on the fidelity of two-qubit gates, and identify the magnitude and direction of the impact of each factor on the fidelity of quantum gates. Here, we systematically studies the effects of chip parameters, control waveforms, coupler start frequency, qubit frequency, etc., on the fidelity of CZ gates. On this basis, the response of gate fidelity to control parameters deviation is further studied. At the chip design level, quantum chips based on CBQ parameters can achieve higher-fidelity CZ gates in shorter gate operation time. In terms of controlling waveforms, threelevel Fourier series wave is superior to the square wave and rounded trapezoidal wave in terms of gate error rate and gate operation time, and can better meet the requirements for effcient implementation of high-fidelity quantum gates. Factors such as the coupler starting frequency and qubit frequency have relatively little effect on the fidelity of the CZ gate. In a wide frequency range, high-fidelity CZ gates can always be achieved by optimizing the control waveform parameters. It is important to point out that slight deviations in control parameters will lead to a significant increase in the gate error. This study is of great significance for clarifying the impact of various factors on the fidelity of the CZ gate. It can provide theoretical and technical support for the design of superconducting quantum chips and the realization of high-fidelity CZ gate, and promote the engineering development of quantum computing.
  • [1]

    Easttom C 2022 Modern Cryptography: Applied Mathematics for Encryption and Information Security (Cham: Springer International Publishing) pp397–407

    [2]

    Hossain Faruk M J, Tahora S, Tasnim M, Shahriar H, Sakib N 2022 2022 1st International Conference on AI in Cybersecurity Victoria, TX, USA, May 24-26, 2022 p1

    [3]

    Cavaliere F, Mattsson J, Smeets B 2020 Network Security 2020 9

    [4]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195

    [5]

    Wang Y, Liu J 2024 Rep. Prog. Phys. 87 116402

    [6]

    Lanyon B P, Whitfield J D, Gillett G G, Goggin M E, Almeida M P, Kassal I, Biamonte J D, Mohseni M, Powell B J, Barbieri M, Aspuru-Guzik A, White A G 2010 Nat. Chem. 2 106

    [7]

    Cao Y, Romero J, Olson J P, Degroote M, Johnson P D, Kieferová M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A 2019 Chem. Rev. 119 10856

    [8]

    Orús R, Mugel S, Lizaso E 2019 Rev. Phys. 4 100028

    [9]

    Herman D, Googin C, Liu X, Sun Y, Galda A, Safro I, Pistoia M, Alexeev Y 2023 Nat. Rev. Phys. 5 450

    [10]

    Egger D J, Gambella C, Marecek J, McFaddin S, Mevissen M, Raymond R, Simonetto A, Woerner S, Yndurain E 2020 IEEE Transactions on Quantum Engineering 1 1

    [11]

    Preskill J 2018 Quantum 2 79

    [12]

    Aharonov D, Ben-Or M 2008 Siam J Comput. 38 1207

    [13]

    Knill E, Laflamme R, Zurek W H 1998 Science 279 342

    [14]

    Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C, Wallraff A 2022 Nature 605 669

    [15]

    Zhao Y, Ye Y, Huang H L, Zhang Y, Wu D, Guan H, Zhu Q, Wei Z, He T, Cao S, Chen F, Chung T H, Deng H, Fan D, Gong M, Guo C, Guo S, Han L, Li N, Li S, Li Y, Liang F, Lin J, Qian H, Rong H, Su H, Sun L, Wang S, Wu Y, Xu Y, Ying C, Yu J, Zha C, Zhang K, Huo Y H, Lu C Y, Peng C Z, Zhu X, Pan J W 2022 Phys. Rev. Lett. 129 030501

    [16]

    Google Quantum AI 2023 Nature 614 676

    [17]

    Gupta R S, Sundaresan N, Alexander T, Wood C J, Merkel S T, Healy M B, Hillenbrand M, JochymO’Connor T, Wootton J R, Yoder T J, Cross A W, Takita M, Brown B J 2024 Nature 625 259

    [18]

    Brock B L, Singh S, Eickbusch A, Sivak V V, Ding A Z, Frunzio L, Girvin S M, Devoret M H 2025 Nature 641 612

    [19]

    Babbush R, McClean J R, Newman M, Gidney C, Boixo S, Neven H 2021 PRX Quantum 2 010103

    [20]

    Litinski D 2019 Quantum 3 128

    [21]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [22]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320

    [23]

    O’ Brien T E, Tarasinski B, DiCarlo L 2017 npj Quantum Inf. 3 39

    [24]

    Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504

    [25]

    Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, Chen K, Chen X, Chen X, Chen Z, Chen Z, Chen Z, Chu W, Deng H, Deng Z, Ding P, Ding X, Ding Z, Dong S, Dong Y, Fan B, Fu Y, Gao S, Ge L, Gong M, Gui J, Guo C, Guo S, Guo X, Han L, He T, Hong L, Hu Y, Huang H L, Huo Y H, Jiang T, Jiang Z, Jin H, Leng Y, Li D, Li D, Li F, Li J, Li J, Li J, Li J, Li N, Li S, Li W, Li Y, Li Y, Liang F, Liang X, Liao N, Lin J, Lin W, Liu D, Liu H, Liu M, Liu X, Liu X, Liu Y, Lou H, Ma Y, Meng L, Mou H, Nan K, Nie B, Nie M, Ning J, Niu L, Peng W, Qian H, Rong H, Rong T, Shen H, Shen Q, Su H, Su F, Sun C, Sun L, Sun T, Sun Y, Tan Y, Tan J, Tang L, Tu W, Wan C, Wang J, Wang B, Wang C, Wang C, Wang C, Wang J, Wang L, Wang R, Wang S, Wang X, Wang X, Wang X, Wang Y, Wei Z, Wei J, Wu D, Wu G, Wu J, Wu S, Wu Y, Xie S, Xin L, Xu Y, Xue C, Yan K, Yang W, Yang X, Yang Y, Ye Y, Ye Z, Ying C, Yu J, Yu Q, Yu W, Zeng X, Zhan S, Zhang F, Zhang H, Zhang K, Zhang P, Zhang W, Zhang Y, Zhang Y, Zhang L, Zhao G, Zhao P, Zhao X, Zhao X, Zhao Y, Zhao Z, Zheng L, Zhou F, Zhou L, Zhou N, Zhou N, Zhou S, Zhou S, Zhou Z, Zhu C, Zhu Q, Zou G, Zou H, Zhang Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2025 Phys. Rev. Lett. 134 090601

    [26]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318

    [27]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [28]

    Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D, Esteve D 2012 Phys. Rev. Lett. 108 057002

    [29]

    Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H, Yu Y 2020 Phys. Rev. Lett. 125 200503

    [30]

    Barends R, Quintana C M, Petukhov A G, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F, Arya K, Buell D, Burkett B, Chen Z, Chiaro B, Dunsworth A, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Huang T, Jeffrey E, Kelly J, Klimov P V, Kostritsa F, Landhuis D, Lucero E, McEwen M, Megrant A, Mi X, Mutus J, Neeley M, Neill C, Ostby E, Roushan P, Sank D, Satzinger K J, Vainsencher A, White T, Yao J, Yeh P, Zalcman A, Neven H, Smelyanskiy V N, Martinis J M 2019 Phys. Rev. Lett. 123 210501

    [31]

    Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O’Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, Martinis J M 2014 Phys. Rev. Lett. 113 220502

    [32]

    Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M 2020 Phys. Rev. Lett. 125 120504

    [33]

    Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, Oliver W D 2018 Phys. Rev. Appl. 10 054062

    [34]

    Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L 2020 Phys. Rev. Appl. 14 024070

    [35]

    Sete E A, Chen A Q, Manenti R, Kulshreshtha S, Poletto S 2021 Phys. Rev. Appl. 15 064063

    [36]

    Setiawan F, Groszkowski P, Clerk A A 2023 Phys. Rev. Appl. 19 034071

    [37]

    Møller D, Madsen L B, Mølmer K 2008 Phys. Rev. Lett. 100 170504

    [38]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [39]

    Chow J M, Gambetta J M, Cross A W, Merkel S T, Rigetti C, Steffen M 2013 New J. Phys. 15 115012

    [40]

    Rigetti C, Devoret M 2010 Phys. Rev. B 81 134507

    [41]

    Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Córcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C, Steffen M 2012 Phys. Rev. Lett. 109 240505

    [42]

    Caldwell S A, Didier N, Ryan C A, Sete E A, Hudson A, Karalekas P, Manenti R, da Silva M P, Sinclair R, Acala E, Alidoust N, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, Bouayadi T E, Girshovich D, Hong S, Kuang K, Lenihan M, Manning T, Marchenkov A, Marshall J, Maydra R, Mohan Y, O’Brien W, Osborn C, Otterbach J, Papageorge A, Paquette J P, Pelstring M, Polloreno A, Prawiroatmodjo G, Rawat V, Reagor M, Renzas R, Rubin N, Russell D, Rust M, Scarabelli D, Scheer M, Selvanayagam M, Smith R, Staley A, Suska M, Tezak N, Thompson D C, To T W, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti C 2018 Phys. Rev. Appl. 10 034050

    [43]

    Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M, Chow J M 2016 Phys. Rev. Lett. 117 250502

    [44]

    Pedersen L H, Møller N M, Mølmer K 2007 Phys. Lett. A 367 47

    [45]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [46]

    Chu J, Yan F 2021 Phys. Rev. Appl. 16 054020

  • [1] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, doi: 10.7498/aps.72.20222166
    [2] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20220224
    [3] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, doi: 10.7498/aps.71.20212245
    [4] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, doi: 10.7498/aps.71.20221900
    [5] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, doi: 10.7498/aps.70.20211492
    [6] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, doi: 10.7498/aps.70.20210923
    [7] Yao Hong-Bin, Jiang Xiang-Zhan, Cao Chang-Hong, Li Wen-Liang. Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field. Acta Physica Sinica, doi: 10.7498/aps.68.20190400
    [8] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, doi: 10.7498/aps.67.20180710
    [9] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, doi: 10.7498/aps.67.20182007
    [10] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, doi: 10.7498/aps.65.220302
    [11] Yang Zeng-Qiang, Zhang Li-Da. Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse. Acta Physica Sinica, doi: 10.7498/aps.64.133203
    [12] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, doi: 10.7498/aps.64.010303
    [13] Yao Hong-Bin, Li Wen-Liang, Zhang Ji, Peng Min. Quantum control of K2 molecule in an intense laser field:Selective population of dressed states. Acta Physica Sinica, doi: 10.7498/aps.63.178201
    [14] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, doi: 10.7498/aps.62.230303
    [15] Zhao Jian-Hui. Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study. Acta Physica Sinica, doi: 10.7498/aps.61.220501
    [16] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.60.090303
    [17] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, doi: 10.7498/aps.57.689
    [18] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, doi: 10.7498/aps.56.4331
    [19] Zhang Deng-Yu, Guo Ping, Gao Feng. Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, doi: 10.7498/aps.56.1906
    [20] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, doi: 10.7498/aps.56.3709
Metrics
  • Abstract views:  58
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2025
  • Accepted Date:  09 June 2025
  • Available Online:  11 June 2025

/

返回文章
返回