Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magneto-electronic properties and manipulation effects of Fe-adsorbed Sb/WS2 heterostructure

He Xin Li Xin-Yan Li Jing-Hui Zhang Zhen-Hua

Citation:

Magneto-electronic properties and manipulation effects of Fe-adsorbed Sb/WS2 heterostructure

He Xin, Li Xin-Yan, Li Jing-Hui, Zhang Zhen-Hua
PDF
HTML
Get Citation
  • To study the induced magnetism mechanism and magneto-electronic properties of non-magnetic two-dimensional van der Waals heterostructure adsorbing magnetic atoms, we construct Sb/WS2 heterostructure, and consider its adsorbed Fe atoms. The calculated adsorption energy shows that TW, VSb adsorption are the most likely positions for Fe atom adsorbed below and above the heterostructure, respectively, and TS_M adsorption is the most likely position for Fe atom adsorbed between two monolayers. The induced magnetism is due to the electron-spin rearrangement caused by the expansion of valence electronic configuration (VEC) and charge transfer after Fe atoms have been adsorbed. The TW adsorption and the TS_M adsorption make the nonmagnetic semiconducting heterostructure become a half-semiconductor (HSC), while VSb adsorption turns the heterostructure into a bipolar magnetic semiconductor (BMS). In particular, the calculated magnetized energy indicates that the interlayer TS_M adsorption leads the heterostructure to holding the highest magnetic stability, which is enough to resist the influence of thermal fluctuation at room temperature. Quantum manipulation can cause the heterostructure to produce abundant magnetism, especially the flexible change of magnetic phase. For example, the application of external electric field can give rise to the magnetic phase transition among HSC, HM (half-metal) and BMS for the heterostructure, and the vertical strain can make the heterostructure realize the magnetic phase transition among HSC, HM and MM (magnetic metal). This study shows that the heterostructure can increase the adsorption region of transition metal atoms (below, interlayer and above), so as to produce rich magnetism, especially for the interlayer adsorption of transition metals, its magnetic stability against temperature is significantly enhanced.
      Corresponding author: Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771076), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4625), and the Scientific Research Fund of Education Department of Hunan Province, China (Grant No. 19A029).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Li X M, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [3]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [4]

    Shang J M, Pan L F, Wang X T, Li J B, Deng H X, Wei Z M 2018 J. Mater. Chem. C 6 7201Google Scholar

    [5]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [6]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [7]

    Liu C H, Clark G, Fryett T, Wu S F, Zheng J J, Hatami F, Xu X D, Majumdar A 2017 Nano Lett. 17 200Google Scholar

    [8]

    Binder J, Withers F, Molas M R, Faugeras C, Nogajewski K, Watanabe K, Taniguchi T, Kozikov A, Geim A K, Novoselov K S, Potemski M 2017 Nano Lett. 17 1425Google Scholar

    [9]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [10]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [11]

    Xiao W Z, Xu L, Rong Q Y, Dai X Y, Cheng C P, Wang L L 2020 Appl. Surf. Sci. 504 144425Google Scholar

    [12]

    Huang L, Li Y, Wei Z M, Li J B 2015 Sci. Rep. 5 16448Google Scholar

    [13]

    Lei C G, Ma Y D, Xu X L, Zhang T, Huang B B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [14]

    Yan R S, Fathipour S, Han Y M, Song B, Xiao S D, Li M D, Ma N, Protasenko V, Muller D A, Jena D, Xing H G 2015 Nano Lett. 15 5791Google Scholar

    [15]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [16]

    Xia C X, Du J, Li M, Li X P, Zhao X, Wang T X, Li J B 2018 Phy. Rev. A 10 054064Google Scholar

    [17]

    Wu Y B, Huang Z Y, Liu H T, He C Y, Xue L, Qi X, Zhong J X 2018 Phys. Chem. Chem. Phys. 20 17387Google Scholar

    [18]

    Bian H, Duan H, Li J, Chen F, Cao B, Long M 2019 AIP Adv. 9 065207Google Scholar

    [19]

    Kundu S, Naik M H, Jain M 2020 Phy. Rev. Mater. 4 054004Google Scholar

    [20]

    Luo M, Xu Y E, Song Y X 2018 J. Supercond. Novel Magn. 31 449Google Scholar

    [21]

    Ding Y M, Shi J J, Zhang M, Zhu Y H, Wu M, Wang H, Cen Y L, Guo W H, Pan S H 2018 Physica E 101 245Google Scholar

    [22]

    Chen HL, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [23]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [24]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [25]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [27]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [28]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [33]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y 2020 Phys. Lett. A 384 126106Google Scholar

    [34]

    吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301Google Scholar

    Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301Google Scholar

    [35]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [36]

    Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, Prasad P N 2021 Chem. Rev. 122 1127Google Scholar

    [37]

    He X, Fan Z Q, Zhang Z H 2020 Phys. Chem. Chem. Phys. 22 23665Google Scholar

  • 图 1  (a)—(d) 优化之后Sb/WS2异质结的四种堆垛方式的主视图和侧视图; (e) 优化后不同异质结的层间距与结合能; (f) 异质结单胞对应的布里渊区

    Figure 1.  (a)–(d) Top and side views of the four stacking patterns of optimized Sb/WS2 heterostructures; (e) the binding energy and interlayer distance of the optimized heterostructures; (f) Brillouin zone corresponding to heterostructure unit-cell.

    图 2  PBE计算的(a) Sb单层、(b) WS2单层和(c) Sb/WS2异质结的能带结构; HSE06计算的(d) Sb单层、(e) WS2单层和(f) Sb/WS2异质结的能带结构

    Figure 2.  Band structures by PBE calculation: (a) Sb monolayer; (b) WS2 monolayer; (c) Sb/WS2 heterostructure. The band structures by HSE06 calculation: (d) Sb monolayer; (e) WS2 monolayer; (f) Sb/WS2 heterostructure.

    图 3  过渡金属原子Fe吸附于Sb/WS2异质结的四个高对称位置 (a) 底层WS2下方; (b) 两单层层间; (c)上层Sb上方

    Figure 3.  Four highly symmetrical adsorbed sites of Fe atom for Sb/WS2 heterostructure: (a) Bellow the bottom WS2 monolayer; (b) between two monolayers; (c) above the top Sb monolayer.

    图 4  FM态自旋极化密度分布, 对应的吸附方式分别为(a) TW, (b) TS_m, (c) VSb. 等值面取为0.002 e/A3

    Figure 4.  Spin-polarized density (magnetic distribution) in the FM state, and corresponding adsorbed manners are: (a) TW; (b) TS_m; (c) VSb. The isosurface is set as 0.002 e/A3.

    图 5  对应最稳三种吸附位置的异质结能带结构、态密度以及投影态密度 (a)—(c) 能带结构; (d)—(f) 态密度和投影态密度

    Figure 5.  Band structure, density of states and projected density of states of the heterostructures corresponding to three most stable adsorption sites: (a)–(c) Band structure; (d)–(f) density of states and projected density of states.

    图 6  (a) 外加电场示意图; (b) 电场能、带隙值及磁性随加电场变化; (c)—(j) Eext = –0.1, –0.3, –0.7, –1, 0.2, 0.5, 0.8 和1.0 V/Å时的能带结构, 其中图(d)中绿色区域代表该阴影部分的能带放大图

    Figure 6.  (a) Schematic diagram of applied external electric field on heterostructure. (b) Electric field energy, band gap, and magnetic phase versus the external electric field. (c)–(j) The band structures for Eext = –0.1, –0.3, –0.7, –1, 0.2, 0.5, 0.8, and 1.0 V/Å, where the green region in panel (d) represents the enlarged partial band structure.

    图 7  (a)施加的拉力与压力示意图; (b) 应变能、带隙及磁相随应变变化; (c)—(f) ε = –0.3, 0.2, 0.35 和 0.4 Å时的能带结构, 其中图(e)与图(f)中绿色区域代表该部分的能带放大图

    Figure 7.  (a) Schematic diagram of stretching and compressing heterostructure; (b) the strain energy, band gap and magnetic phase as versus strain; (c)–(f) band structure at ε = –0.3, 0.2, 0.35, and 0.4 Å, where the green region in panel (e) and (f) represent the enlarged partial band structure.

    表 1  磁矩、TM原子电子构型、电荷转移和磁化能. μ0 为孤立Fe原子的磁矩, μ为Fe原子吸附后磁矩, 括号中M为超元胞磁矩. VEC 为孤立Fe原子价电子构型(valence electron configuration), VEC*为Fe原子吸附后价电子构型. ΔQ为吸附之后Fe原子所转移的电荷, “–”代表 Fe原子失去电荷. EM为磁化能

    Table 1.  Magnetic moment, electron configuration of TM atom, charge transfer and magnetization energy. μ0 is the magnetic moment of isolated Fe atoms, μ is the magnetic moment after adsorption of Fe atoms, M in parentheses is the magnetic moment of the supercell. VEC is the valence electron configuration of isolated Fe atoms, and VEC* is the valence electron configuration of Fe atoms after adsorption. ΔQ is the charge transferred by Fe atom after adsorption, where “–” means that the Fe atom loses its charge. EM is the magnetization energy.

    Adsorbed siteμ0BμB (MB)VECVEC*ΔQ/|e|EM/meV
    TW42.002 (2.023)3d/4s
    6/2
    3d/4s/4p
    6.923/0.354/0.304
    –0.42375.3
    TS_m42.002 (2.290)3d/4s
    6/2
    3d/4s/4p
    7.011/0.568/0.304
    –0.119146.46
    VSb42.004 (2.313)3d/4s
    6/2
    3d/4s/4p
    7.030/0.577/0.330
    –0.06510.02
    DownLoad: CSV
  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Li X M, Tao L, Chen Z F, Fang H, Li X S, Wang X R, Xu J B, Zhu H W 2017 Appl. Phys. Rev. 4 021306Google Scholar

    [3]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [4]

    Shang J M, Pan L F, Wang X T, Li J B, Deng H X, Wei Z M 2018 J. Mater. Chem. C 6 7201Google Scholar

    [5]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [6]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [7]

    Liu C H, Clark G, Fryett T, Wu S F, Zheng J J, Hatami F, Xu X D, Majumdar A 2017 Nano Lett. 17 200Google Scholar

    [8]

    Binder J, Withers F, Molas M R, Faugeras C, Nogajewski K, Watanabe K, Taniguchi T, Kozikov A, Geim A K, Novoselov K S, Potemski M 2017 Nano Lett. 17 1425Google Scholar

    [9]

    He X, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2022 Appl. Surf. Sci. 578 151844Google Scholar

    [10]

    Huang L, Huo N J, Li Y, Chen H, Yang J H, Wei Z M, Li J B, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [11]

    Xiao W Z, Xu L, Rong Q Y, Dai X Y, Cheng C P, Wang L L 2020 Appl. Surf. Sci. 504 144425Google Scholar

    [12]

    Huang L, Li Y, Wei Z M, Li J B 2015 Sci. Rep. 5 16448Google Scholar

    [13]

    Lei C G, Ma Y D, Xu X L, Zhang T, Huang B B, Dai Y 2019 J. Phys. Chem. C 123 23089Google Scholar

    [14]

    Yan R S, Fathipour S, Han Y M, Song B, Xiao S D, Li M D, Ma N, Protasenko V, Muller D A, Jena D, Xing H G 2015 Nano Lett. 15 5791Google Scholar

    [15]

    Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J, Park J H 2016 Nat. Commun. 7 13413Google Scholar

    [16]

    Xia C X, Du J, Li M, Li X P, Zhao X, Wang T X, Li J B 2018 Phy. Rev. A 10 054064Google Scholar

    [17]

    Wu Y B, Huang Z Y, Liu H T, He C Y, Xue L, Qi X, Zhong J X 2018 Phys. Chem. Chem. Phys. 20 17387Google Scholar

    [18]

    Bian H, Duan H, Li J, Chen F, Cao B, Long M 2019 AIP Adv. 9 065207Google Scholar

    [19]

    Kundu S, Naik M H, Jain M 2020 Phy. Rev. Mater. 4 054004Google Scholar

    [20]

    Luo M, Xu Y E, Song Y X 2018 J. Supercond. Novel Magn. 31 449Google Scholar

    [21]

    Ding Y M, Shi J J, Zhang M, Zhu Y H, Wu M, Wang H, Cen Y L, Guo W H, Pan S H 2018 Physica E 101 245Google Scholar

    [22]

    Chen HL, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [23]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [24]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [25]

    Chen H L, Zhang L, Deng X Q, Sun L, Zhang Z H, Fan Z Q 2021 J. Mater. Chem. C 9 12904Google Scholar

    [26]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [27]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [28]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [29]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [30]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [31]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [32]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [33]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y 2020 Phys. Lett. A 384 126106Google Scholar

    [34]

    吴甜, 姚梦丽, 龙孟秋 2021 物理学报 70 056301Google Scholar

    Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301Google Scholar

    [35]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [36]

    Xie Z J, Zhang B, Ge Y Q, Zhu Y, Nie G H, Song Y F, Lim C K, Zhang H, Prasad P N 2021 Chem. Rev. 122 1127Google Scholar

    [37]

    He X, Fan Z Q, Zhang Z H 2020 Phys. Chem. Chem. Phys. 22 23665Google Scholar

  • [1] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] Xiao Cong, Yao Wang. Quantum layertronics in van der Waals systems. Acta Physica Sinica, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] Guo Mu-Cheng, Wang Fu-Dong, Hu Zhao-Gao, Ren Miao-Miao, Sun Wei-Ye, Xiao Wan-Ting, Liu Shu-Ping, Zhong Man-Jin. Research progress of quantum coherence performance and applications of micro/nano scale rare-earth doped crystals. Acta Physica Sinica, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [5] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [7] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [8] Wang Chen, Xia Wei, Suo Peng, Wang Wei, Lin Xian, Guo Yan-Feng, Ma Guo-Hong. Quasi-two-dimensional van der Waals ferromagnetic semiconductor CrGeTe3 studied by THz spectroscopy. Acta Physica Sinica, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [9] Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua. Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [10] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [11] Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying. Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain. Acta Physica Sinica, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [12] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [13] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu. Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [14] Yao Hong-Bin, Jiang Xiang-Zhan, Cao Chang-Hong, Li Wen-Liang. Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field. Acta Physica Sinica, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [15] Zhang Si-Qi, Lu Jing-Bin, Liu Xiao-Jing, Liu Ji-Ping, Li Hong, Liang Yu, Zhang Xiao-Ru, Liu Han, Wu Xiang-Yao, Guo Yi-Qing. Control of evolutionary atomic system of excited atom by using ideal photonic band-gap model. Acta Physica Sinica, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [16] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [17] Yang Zeng-Qiang, Zhang Li-Da. Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse. Acta Physica Sinica, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [18] Yao Hong-Bin, Li Wen-Liang, Zhang Ji, Peng Min. Quantum control of K2 molecule in an intense laser field:Selective population of dressed states. Acta Physica Sinica, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [19] Huang Xian-Shan, Liu Hai-Lian. The use of dynamic cavity environment to achieve controlling of the process of spontaneous emission of an atom. Acta Physica Sinica, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [20] Shi Yun-Long, Yang Ya-Ping, Liu Hai-Lian, Huang Xian-Shan. Control of the evolution of an excited atom by using the dynamic Lorentzian reservior. Acta Physica Sinica, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
Metrics
  • Abstract views:  3677
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2022
  • Accepted Date:  05 July 2022
  • Available Online:  25 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回