Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic particle-in-cell simulation of high-power single-hole post-hole convolute

Wu Han-Yu Zeng Zheng-Zhong Qiu Meng-Tong Zhang Xin-Jun Guo Ning Wei Hao

Citation:

Electromagnetic particle-in-cell simulation of high-power single-hole post-hole convolute

Wu Han-Yu, Zeng Zheng-Zhong, Qiu Meng-Tong, Zhang Xin-Jun, Guo Ning, Wei Hao
PDF
HTML
Get Citation
  • The post-hole convolutes (PHCs) are used in pulsed high-power generators to add the output currents of the magnetically insulated transmission lines (MITLs) and deliver the combined current to a single MITL. Then the single MITL delivers the combined current to the load. Magnetic insulation of electron flow is lost near the post-hole convolute (PHC) in the high-power generator. Although cathode plasma and anode ions are widely considered as the factors of the magnetic insulation collapse, there are some other factors that are needed to study. In this paper, the cathode negative ions are considered in the PIC simulation of a single-hole PHC. In this work, we examine the evolution and dynamics of the negative ions in the PHC. The simulation results demonstrate that there are no current losses while the cathode emits only electrons, little current losses (10 kA out of a total current of 900 kA) while the cathode emits plasma including electrons and ions, and obvious current losses (20 kA out of a total current of 900 kA) while the cathode emits plasma including the electrons, ions and negative ions. The results also indicate that the velocity of the negative ions is about 10 cm/μs, larger than that of the cathode plasma including the electrons and the ions. All results suggest that the cathode negative ions can play an important role in the magnetic insulation collapse, and should be considered carefully in experiment.
      Corresponding author: Wu Han-Yu, wuhanyu@nint.ac.cn ; Qiu Meng-Tong, Qiumengtong@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51790521, 51577156) and the Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1701Z).
    [1]

    Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar

    [2]

    Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar

    [3]

    邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844

    [4]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar

    [5]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar

    [6]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [7]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar

    [8]

    廖臣, 刘大刚, 刘盛刚 2009 物理学报 58 6709Google Scholar

    Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar

    [9]

    Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar

    [10]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar

    [11]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar

    [12]

    Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar

    [13]

    Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar

    [14]

    Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar

    [15]

    刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 物理学报 59 1643Google Scholar

    Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar

    [16]

    张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239

    Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239

    [17]

    吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845

    Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845

    [18]

    郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010

    Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010

    [19]

    魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 物理学报 66 038402Google Scholar

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar

    [20]

    Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [21]

    Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar

    [22]

    Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar

  • 图 1  仿真模型的结构示意图 (a) 单孔PHC及三板传输线剖面图(单位: mm); (b) 单孔PHC及三板传输线俯视图(单位: mm)

    Figure 1.  The configuration of the simulated model: (a) The cutaway drawing of the single-hole PHC and the tri-plated transmission line (units: mm); (b) the vertical drawing of the single-hole PHC and the tri-plated transmission line (units: mm).

    图 2  仿真计算时馈入的理想电压信号

    Figure 2.  The forward voltage waveform used in simulation.

    图 3  阴极发射电子时, 单孔PHC的上/下游电流

    Figure 3.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted only electrons

    图 4  阴极发射等离子体时, 单孔PHC的上/下游电流

    Figure 4.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted electrons and ions.

    图 5  柱-孔附近等离子体随时间运动分布的二维图, 紫色代表电子, 黄色代表质子(横坐标和纵坐标单位: m) (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns

    Figure 5.  Particles distribution near the convolute of the plasmas motion, the purple is electrons, the yellow is ions (unit of the Y/Z-axis: m): (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns.

    图 6  20 ns时刻, 阴极等离子体的密度分布

    Figure 6.  Density distribution of the cathode plasma when time is 20 ns.

    图 7  等离子体密度前沿位置随时间变化曲线

    Figure 7.  Motion curve of the front of the plasma density.

    图 8  阴极等离子体含负离子时, 单孔PHC的上/下游电流

    Figure 8.  The upstream and the downstream currents of the single-hole PHC while the cathode emitted electrons, ions, and negative ions.

    图 9  柱-孔附近等离子体随时间运动分布的二维图(横坐标和纵坐标单位: m) (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns

    Figure 9.  Particles distribution near the convolute of the plasmas motion (unit of the Y/Z-axis: m): (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns.

    图 10  负离子密度前沿位置随时间变化曲线

    Figure 10.  Motion curve of the front of the negative density.

    图 11  阴阳极间隙闭合速率

    Figure 11.  Experimental data of the gap closure speed.

  • [1]

    Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar

    [2]

    Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar

    [3]

    邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844

    [4]

    Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar

    [5]

    Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar

    [6]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [7]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar

    [8]

    廖臣, 刘大刚, 刘盛刚 2009 物理学报 58 6709Google Scholar

    Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar

    [9]

    Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar

    [10]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar

    [11]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar

    [12]

    Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar

    [13]

    Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar

    [14]

    Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar

    [15]

    刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 物理学报 59 1643Google Scholar

    Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar

    [16]

    张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239

    Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239

    [17]

    吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845

    Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845

    [18]

    郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010

    Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010

    [19]

    魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 物理学报 66 038402Google Scholar

    Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar

    [20]

    Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [21]

    Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar

    [22]

    Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar

  • [1] Yang Yu-Sen, Wang Lin, Gou De-Zhi, Tang Zheng-Ming. Electromagnetic characteristics of waveguide model of plasma-photon crystal array structure. Acta Physica Sinica, 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] Niu Shu-Tong, Zhan Xin, Hua Qiang, Li Wen-Teng, Zhou Li-Hua, Yang Ting-Gui. Study on transport process of 16 keV Cions in tapered glass capillary: Role of capillary tilt angles. Acta Physica Sinica, 2024, 73(5): 053401. doi: 10.7498/aps.73.20231513
    [3] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] Zou Xiu, Liu Hui-Ping, Zhang Xiao-Nan, Qiu Ming-Hui. Structure of collisional magnetized plasma sheath with non-extensive distribution of electrons. Acta Physica Sinica, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [5] Li Wen-Qiu, Wang Gang, Su Xiao-Bao. Analysis of mode radiation characteristics in a non-magnetized cold plasma column. Acta Physica Sinica, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [6] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [7] Chen Li-Juan, Lu Shi-Ping, Mo Jia-Qi. The periodic orbits of sport model of plasmas particle in the process of magnetosphere-ionosphere coupling. Acta Physica Sinica, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [8] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [9] Liu La-Qun, Meng Lin, Deng Jian-Jun, Song Sheng-Yi, Zou Wen-Kang, Liu Da-Gang, Liu Sheng-Gang. The implementation of the computer simulation of magnetically insulated transmission lines in post-hole convolute. Acta Physica Sinica, 2010, 59(3): 1643-1650. doi: 10.7498/aps.59.1643
    [10] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [11] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [12] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [13] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] Zhang Li, Li Xiang-Dong, Jiang Xin-Ge. Plasma effect on the Kα group emission of He-like neon. Acta Physica Sinica, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [17] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [18] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [19] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [20] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
Metrics
  • Abstract views:  6687
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2019
  • Accepted Date:  03 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回