Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle calculation of electronic structures and absorption spectra of lithium niobate crystals doped with Co and Zn ions

Wu Sheng-Yu Zhang Yun Bai Hong-Mei Liang Jin-Ling

Citation:

First-principle calculation of electronic structures and absorption spectra of lithium niobate crystals doped with Co and Zn ions

Wu Sheng-Yu, Zhang Yun, Bai Hong-Mei, Liang Jin-Ling
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the electronic structures and absorption spectra of Co doped and Co, Zn co-doped LiNbO3 crystals are studied by the first-principle using the density functional theory, to explore the characteristics of charge transfer in Co, Zn co-doped LiNbO3 crystals, and to build the relationship between these characteristics and the holographic storage quality. The basic model is built as a supercell structure of 211 of near-stoichiometric pure LiNbO3 crystal with 60 atoms, including 12 Li atoms, 12 Nb atoms and 36 O atoms. Four models are established as the near-stoichiometric pure LiNbO3 crystal (LiNbO3), the cobalt doped LiNbO3 crystal (Co:LiNbO3), the zinc and cobalt co-doped LiNbO3 crystal [Co:Zn(L):LiNbO3] with doping ions at Li sites, and the other zinc and cobalt co-doped LiNbO3 crystal [Co:Zn (E):LiNbO3)] with zinc ions at Li sites and Nb sites. The last two models would represent the concentration of Zn ions below the threshold (6 mol%) and near the threshold, respectively. The charge compensation forms are taken as CoLi+-VLi-, CoLi+-ZnLi+-2VLi- and CoLi+-ZnNb3--2ZnLi+ respectively in doped models. The results show that the conduction band and valence band of pure LiNbO3 crystal are mainly composed of O 2p orbit and Nb 4d orbit respectively, and energy gap is 3.48 eV. The band gap of the doped LiNbO3 crystal is narrower than that of pure LiNbO3 crystal, due to the Co 3d and Zn 3d orbit energy levels superposed with that of O 2p orbit energy levels, and thus forming the upside of covalent bond. The band gap of Co:LiNbO3 crystal is 3.32 eV, and that of Co:Zn:LiNbO3 crystals are 2.87 eV and 2.75 eV respectively for Co:Zn(L):LiNbO3 and Co:Zn(E):LiNbO3 model. The Co 3d orbit is split into eg orbit and t2g orbit with different energies. The absorption peak at 2.40 eV appears in the band gap of Co:LiNbO3 crystal, which is attributed to the transfer of the Co 3d splitting orbital t2g electrons to conduction band. The absorption peaks of 1.58 eV and 1.10 eV could be taken as the result of eg electron transfers of both Co2+ and Co3+ in crystal, especially the latter ion. These two absorption peaks are obviously enhanced in Co:Zn (E):LiNbO3 crystal compared with in other samples in this paper. Based on that, it could be proposed that a charge transfer between Zn2+ and Co2+ as Co2++Zn2+Co3++Zn+ exist in the crystal, which results in the decrease of eg orbital electron number, but hardly affect the t2g orbital electron. The Co ion in crystal could act as the deep-level center (2.40 eV) or the shallow-level center (1.58 eV) with the different accompanying doped photorefractive ions in the two-light holographic storage applications. In both cases, the choice of Zn ion concentration near threshold could be helpful for the photo damage resistance and recording light absorption in storage applications.
      Corresponding author: Zhang Yun, yzhang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274257).
    [1]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkaret R R 1998 Science 282 1089

    [2]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212 (in Chinese) [赵百强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212]

    [3]

    Lee H J, Shur J W, Shin T I, Yoon D H 2007 Opt. Mater. 30 85

    [4]

    Xia H P, Wang J H, Zhang J L, Zhang Y P, Nie Q H 2005 Chin. J. Lasers 32 965 (in Chinese) [夏海平, 王金浩, 章践立, 张约品, 聂秋华 2005 中国激光 32 965]

    [5]

    Choi Y N, Park I W, Kim S S, Park S S, Choh S H 1999 J. Phys.: Condens. Matter 11 4723

    [6]

    Zheng W, Zhou Y X, Liu C X 2003 Acta Photon. Sin. 32 1492 (in Chinese) [郑威, 周玉祥, 刘彩霞 2003 光子学报 32 1492]

    [7]

    Zeng X L, Wang J H, Xia H P, Zhang J L, Song H W, Zhang J H, Yao L Z 2004 Chin. J. Lumin. 25 435 (in Chinese) [曾宪林, 王金浩, 夏海平, 章践立, 宋宏伟, 张家骅, 姚连增 2004 发光学报 25 435]

    [8]

    Kong Y F, Li B, Chen Y L, Huang Z H, Chen S L, Zhang L, Liu S G, Xu J J, Yan W B, Liu H D, Wang Y, Xie X, Zhang W L, Zhang G Y 2003 J. Infrared Millim Waves 22 40 (in Chinese) [孔勇发, 李兵, 陈云琳, 黄自恒, 陈绍林, 张玲, 刘士国, 许京军, 阎文博, 刘宏德, 王岩, 谢翔, 张万林, 张光寅 2003 红外与毫米波学报 22 40]

    [9]

    Zhang Y, Xu Y H, Li M H, Zhao Y Q 2001 J. Cryst. Growth 233 537

    [10]

    Abrahams S C, Reddy J M, Bernstein J L 1966 J. Phys. Chem. Solid 26 997

    [11]

    Iyi N, Kitamura K, Izumi F, Yamamoto J K, Hayashi T, Asano H, Kimura S 1992 J. Solid State Chem. 101 340

    [12]

    Tsai P C, Sun M L, Chia C T, Lu H F, Lin S H, Hu M L, Lee J F 2008 Appl. Phys. Lett. 92 161901

    [13]

    Fujita H, Inoue M, Phillips W 1978 J. Phys. Soc. Jpn. 44 1909

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Wang W, Wang R, Zhang W, Xing L, Xu Y, Wu X 2013 Phys. Chem. Chem. Phys. 15 14347

    [16]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [17]

    Zeng F, Sheng P, Tang G S, Pan F, Yan W S, Hu F C, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [18]

    Thierfelder C, Sanna S, Schindlmayr A, Schmidt W G 2010 Phys. Status Solidi C 7 362

    [19]

    Lei X W, Lin Z, Zhao H 2011 J. At. Mol. Phys. 28 944 (in Chinese) [雷晓蔚, 林竹, 赵辉 2011 原子与分子物理学报 28 944]

    [20]

    Gao P, Liu Q J, Zhang X J 2010 Acta Phys. Sin. 59 493 (in Chinese) [高攀, 柳清菊, 张学军 2010 物理学报 59 493]

    [21]

    Gray H B 1964 J. Chem. Educ. 41 1

    [22]

    Xia H P, Wang J H, Zhang J L, Zhang Y P 2005 J. Chin. Ceram. Soc. 33 1326 (in Chinese) [夏海平, 王金浩, 章践立, 张约品 2005 硅酸盐学报 33 1326]

    [23]

    Yan W B, Li Y X, Shi L H, Chen H J, Liu S G, Zhang L, Huang Z H, Chen S H, Kong Y F 2007 Opt. Express 15 17010

    [24]

    Wood D L, Remeika J P 1967 J. Chem. Phys. 46 3595

    [25]

    Arizmendi L, Cabrera J M, Agullolopez F 1984 J. Phys. C: Solid State Phys. 17 515

    [26]

    Mok F H, Burr G W, Psaltis D 1996 Opt. Lett. 21 896

    [27]

    Xu J J, Liu S M, Wu Y Q, Zhang G Y 1991 Acta Phys. Sin. 40 1443 (in Chinese) [许京军, 刘思敏, 武原庆, 张光寅 1991 物理学报 40 1443]

    [28]

    Psaltis D, Berben D, Buse K, Luennemann M, Berben Dirk, Hartwig Ulrich, Buse Karsten 2003 J. Opt. Soc. Am. B 20 1491

  • [1]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkaret R R 1998 Science 282 1089

    [2]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212 (in Chinese) [赵百强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212]

    [3]

    Lee H J, Shur J W, Shin T I, Yoon D H 2007 Opt. Mater. 30 85

    [4]

    Xia H P, Wang J H, Zhang J L, Zhang Y P, Nie Q H 2005 Chin. J. Lasers 32 965 (in Chinese) [夏海平, 王金浩, 章践立, 张约品, 聂秋华 2005 中国激光 32 965]

    [5]

    Choi Y N, Park I W, Kim S S, Park S S, Choh S H 1999 J. Phys.: Condens. Matter 11 4723

    [6]

    Zheng W, Zhou Y X, Liu C X 2003 Acta Photon. Sin. 32 1492 (in Chinese) [郑威, 周玉祥, 刘彩霞 2003 光子学报 32 1492]

    [7]

    Zeng X L, Wang J H, Xia H P, Zhang J L, Song H W, Zhang J H, Yao L Z 2004 Chin. J. Lumin. 25 435 (in Chinese) [曾宪林, 王金浩, 夏海平, 章践立, 宋宏伟, 张家骅, 姚连增 2004 发光学报 25 435]

    [8]

    Kong Y F, Li B, Chen Y L, Huang Z H, Chen S L, Zhang L, Liu S G, Xu J J, Yan W B, Liu H D, Wang Y, Xie X, Zhang W L, Zhang G Y 2003 J. Infrared Millim Waves 22 40 (in Chinese) [孔勇发, 李兵, 陈云琳, 黄自恒, 陈绍林, 张玲, 刘士国, 许京军, 阎文博, 刘宏德, 王岩, 谢翔, 张万林, 张光寅 2003 红外与毫米波学报 22 40]

    [9]

    Zhang Y, Xu Y H, Li M H, Zhao Y Q 2001 J. Cryst. Growth 233 537

    [10]

    Abrahams S C, Reddy J M, Bernstein J L 1966 J. Phys. Chem. Solid 26 997

    [11]

    Iyi N, Kitamura K, Izumi F, Yamamoto J K, Hayashi T, Asano H, Kimura S 1992 J. Solid State Chem. 101 340

    [12]

    Tsai P C, Sun M L, Chia C T, Lu H F, Lin S H, Hu M L, Lee J F 2008 Appl. Phys. Lett. 92 161901

    [13]

    Fujita H, Inoue M, Phillips W 1978 J. Phys. Soc. Jpn. 44 1909

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Wang W, Wang R, Zhang W, Xing L, Xu Y, Wu X 2013 Phys. Chem. Chem. Phys. 15 14347

    [16]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [17]

    Zeng F, Sheng P, Tang G S, Pan F, Yan W S, Hu F C, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [18]

    Thierfelder C, Sanna S, Schindlmayr A, Schmidt W G 2010 Phys. Status Solidi C 7 362

    [19]

    Lei X W, Lin Z, Zhao H 2011 J. At. Mol. Phys. 28 944 (in Chinese) [雷晓蔚, 林竹, 赵辉 2011 原子与分子物理学报 28 944]

    [20]

    Gao P, Liu Q J, Zhang X J 2010 Acta Phys. Sin. 59 493 (in Chinese) [高攀, 柳清菊, 张学军 2010 物理学报 59 493]

    [21]

    Gray H B 1964 J. Chem. Educ. 41 1

    [22]

    Xia H P, Wang J H, Zhang J L, Zhang Y P 2005 J. Chin. Ceram. Soc. 33 1326 (in Chinese) [夏海平, 王金浩, 章践立, 张约品 2005 硅酸盐学报 33 1326]

    [23]

    Yan W B, Li Y X, Shi L H, Chen H J, Liu S G, Zhang L, Huang Z H, Chen S H, Kong Y F 2007 Opt. Express 15 17010

    [24]

    Wood D L, Remeika J P 1967 J. Chem. Phys. 46 3595

    [25]

    Arizmendi L, Cabrera J M, Agullolopez F 1984 J. Phys. C: Solid State Phys. 17 515

    [26]

    Mok F H, Burr G W, Psaltis D 1996 Opt. Lett. 21 896

    [27]

    Xu J J, Liu S M, Wu Y Q, Zhang G Y 1991 Acta Phys. Sin. 40 1443 (in Chinese) [许京军, 刘思敏, 武原庆, 张光寅 1991 物理学报 40 1443]

    [28]

    Psaltis D, Berben D, Buse K, Luennemann M, Berben Dirk, Hartwig Ulrich, Buse Karsten 2003 J. Opt. Soc. Am. B 20 1491

  • [1] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] Fang Yu-Zhen, Kong Xiang-Jin, Wang Dong-Ting, Cui Shou-Xin, Liu Jun-Hai. First principle study of electron and band structure of BixBa1-xTiO3. Acta Physica Sinica, 2018, 67(11): 117101. doi: 10.7498/aps.67.20172644
    [3] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [5] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [12] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [19] Zhang Yan-Ping, Zhang Feng-Shou, Meng Ke-Lai, Xiao Guo-Qing. Optical absorption spectra of Na5, Na6 and Na7 clusters: a theoretical study. Acta Physica Sinica, 2007, 56(4): 2092-2097. doi: 10.7498/aps.56.2092
    [20] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
Metrics
  • Abstract views:  6096
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2018
  • Accepted Date:  08 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回