Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution

Li He Chen An-Min Yu Dan Li Su-Yu Jin Ming-Xing

Citation:

Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution

Li He, Chen An-Min, Yu Dan, Li Su-Yu, Jin Ming-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Supercontinuum generation is an important nonlinear phenomenon that occurs during the femtosecond laser filamentation in transparent medium, and its potential and promising applications like remote sensing, biomedical imaging and generation of few-cycle femtosecond pulses, etc. have aroused a great deal of interest. With the extensive and thorough theoretical simulation and experimental research of the supercontinuum generation in air, the mechanism of the supercontinuum induced by femtosecond laser filament in gaseous medium has become clear. However, the femtosecond laser filament-induced supercontinuum in liquid is still an open question. In this work, by taking NaCl solution for example, we investigate the influence of solution temperature on the supercontinuum induced by the femtosecond laser filamentation in solution. It is found that when the laser pulse energy is relatively low (e.g. 20 and 50 J), the influence of solution temperature on supercontinuum generation can be neglected. In contrast, when the laser pulse energy is relatively high (e.g. 200 J), with the increase of solution temperature, the supercontinuum generation shows a suppression tendency. The water molecules in NaCl solution are photo-ionized due to the high intensity of femtosecond laser filament, generating a great deal of oxygen (O2), hydrogen (H2) and water vapor (H2O), and thus forming bubbles that float upwards. In the case of lower pulse energy, the multi-photon ionization rate is low, therefore, only a few bubbles are generated, and they are small in size, which hardly affects the supercontinuum generation. In the case of higher pulse energy, a large number of bubbles can be observed in the NaCl solution, and their sizes become increasingly large when the temperature of NaCl solution increases. The generation of bubbles leads to the reflection and refraction of light, which inevitably influences the spectral intensity. Furthermore, the components (e.g. O2, H2 and H2O) in the bubbles also absorb the supercontinuum, which further lowers the spectral intensity. This work reveals that the main factors leading to the supercontinuum suppression in solution can be attributed to the generation of bubbles during femtosecond laser filamentation and the scattering and absorption of light caused by water vapor in bubbles. When we detect the components in solution via the femtosecond laser filament-induced supercontiunum, the influence of tempera-ture can be effectively eliminated by adjusting the incident pulse energy. Moreover, in the case of high pulse energy, the supercontinuum generation can be controlled by adjusting the solution temperature. This study is conducible to the application of supercontinuum as well as its generation.
      Corresponding author: Li Su-Yu, sylee@jlu.edu.cn;mxjin@jlu.edu.cn ; Jin Ming-Xing, sylee@jlu.edu.cn;mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704145, 11474129, 11674124) and the China Postdoctoral Science Foundation (Grant No. 2017M610190).
    [1]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [2]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [3]

    Couairona A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [4]

    Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R, Xu Z Z 2012 Laser Phys. 22 1

    [5]

    Couairon A, Brambilla E, Corti T, Majus D, Ramrez-Gngora O D J, Kolesik M 2011 Eur. Phys. J. Special Topics 199 5

    [6]

    Li S Y, Guo F M, Yang Y J, Jin M X 2015 Chin. Phys. B 24 114207

    [7]

    Liu W W 2014 Chin. J. Phys. 52 465

    [8]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photon. Rev. 9 275

    [9]

    Li H, Li S Y, Li S C, Liu D L, Tian D, Chen A M, Wang Y, Wang X W, Zhang Y F, Jin M X 2016 High Power Laser Sci. Eng. 4 e7

    [10]

    Shi Y, Chen A, Jiang Y, Li S, Jin M 2016 Opt. Commun. 367 174

    [11]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [12]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 011401

    [13]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [14]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838

    [15]

    Liu Z Y, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [16]

    Li H, Shi Z, Wang X W, Sui L Z, Li S Y, Jin M X 2017 Chem. Phys. Lett. 681 86

    [17]

    Qin Y D, Zhu C J, Yang H, Gong Q H 2000 Chin. Phys. Lett. 17 413

    [18]

    Li D, Zhang L, Zafar S, Song H, Hao Z, Xi T, Gao X, Lin J 2017 Chin. Phys. B 26 074213

    [19]

    Luo Q, Liu W, Chin S L 2003 Appl. Phys. B 76 337

    [20]

    Yao J P, Zeng B, Xu H L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802

    [21]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750

    [22]

    Kasparian J, Rodriguez M, Mjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andr Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wste L 2003 Science 301 61

    [23]

    Tu H, Boppart S A 2013 Laser Photon. Rev. 7 628

    [24]

    Berg L, Rolle J, Khler C 2013 Phys. Rev. A 88 023816

    [25]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [26]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582

    [27]

    Liu W, Petit S, Becker A, Akozbek N, Bowdenb C M, Chin S L 2002 Opt. Commun. 202 189

    [28]

    Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L 2003 Appl. Phys. B 77 149

    [29]

    Santhosh C, Dharmadhikari A K, Dharmadhikari J, Alti K, Mathur D 2010 Appl. Phys. B 99 427

    [30]

    Cui Q N, Yao J P, Ni J L, Cheng Y 2012 J. Opt. 14 075205

    [31]

    Lagac S, Chin S L 1996 Appl. Opt. 35 907

    [32]

    Mizushima Y, Saito T 2015 Appl. Phys. Lett. 107 114102

  • [1]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [2]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [3]

    Couairona A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [4]

    Chin S L, Wang T J, Marceau C, Wu J, Liu J S, Kosareva O, Panov N, Chen Y P, Daigle J F, Yuan S, Azarm A, Liu W W, Seideman T, Zeng H P, Richardson M, Li R, Xu Z Z 2012 Laser Phys. 22 1

    [5]

    Couairon A, Brambilla E, Corti T, Majus D, Ramrez-Gngora O D J, Kolesik M 2011 Eur. Phys. J. Special Topics 199 5

    [6]

    Li S Y, Guo F M, Yang Y J, Jin M X 2015 Chin. Phys. B 24 114207

    [7]

    Liu W W 2014 Chin. J. Phys. 52 465

    [8]

    Xu H, Cheng Y, Chin S L, Sun H B 2015 Laser Photon. Rev. 9 275

    [9]

    Li H, Li S Y, Li S C, Liu D L, Tian D, Chen A M, Wang Y, Wang X W, Zhang Y F, Jin M X 2016 High Power Laser Sci. Eng. 4 e7

    [10]

    Shi Y, Chen A, Jiang Y, Li S, Jin M 2016 Opt. Commun. 367 174

    [11]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [12]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 011401

    [13]

    Zhang Z, Chen Y, Chen M, Zhang Z, Yu J, Sheng Z, Zhang J 2016 Phys. Rev. Lett. 117 243901

    [14]

    Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W 2015 Opt. Lett. 40 3838

    [15]

    Liu Z Y, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [16]

    Li H, Shi Z, Wang X W, Sui L Z, Li S Y, Jin M X 2017 Chem. Phys. Lett. 681 86

    [17]

    Qin Y D, Zhu C J, Yang H, Gong Q H 2000 Chin. Phys. Lett. 17 413

    [18]

    Li D, Zhang L, Zafar S, Song H, Hao Z, Xi T, Gao X, Lin J 2017 Chin. Phys. B 26 074213

    [19]

    Luo Q, Liu W, Chin S L 2003 Appl. Phys. B 76 337

    [20]

    Yao J P, Zeng B, Xu H L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802

    [21]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750

    [22]

    Kasparian J, Rodriguez M, Mjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andr Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, Wste L 2003 Science 301 61

    [23]

    Tu H, Boppart S A 2013 Laser Photon. Rev. 7 628

    [24]

    Berg L, Rolle J, Khler C 2013 Phys. Rev. A 88 023816

    [25]

    Xu F, Liu J S, Li R X, Xu Z Z 2007 Chin. Opt. Lett. 5 490

    [26]

    Gaeta A L 2000 Phys. Rev. Lett. 84 3582

    [27]

    Liu W, Petit S, Becker A, Akozbek N, Bowdenb C M, Chin S L 2002 Opt. Commun. 202 189

    [28]

    Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L 2003 Appl. Phys. B 77 149

    [29]

    Santhosh C, Dharmadhikari A K, Dharmadhikari J, Alti K, Mathur D 2010 Appl. Phys. B 99 427

    [30]

    Cui Q N, Yao J P, Ni J L, Cheng Y 2012 J. Opt. 14 075205

    [31]

    Lagac S, Chin S L 1996 Appl. Opt. 35 907

    [32]

    Mizushima Y, Saito T 2015 Appl. Phys. Lett. 107 114102

  • [1] Tian Kang-Zhen, Hu Yong-Sheng, Ren He, Qi Si-Sheng, Yang An-Ping, Feng Xian, Yang Zhi-Yong. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation. Acta Physica Sinica, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [2] Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing. Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air. Acta Physica Sinica, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] Li Shuai-Yao, Zhang Da-Yuan, Gao Qiang, Li Bo, He Yong, Wang Zhi-Hua. Temperature measurement in combustion flow field with femtosecond laser-induced filament. Acta Physica Sinica, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [4] Jia Nan, Li Tang-Jun, Sun Jian, Zhong Kang-Ping, Wang Mu-Guang. Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber. Acta Physica Sinica, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [5] Zhang Zong-Xin, Xu Rong-Jie, Song Li-Wei, Wang Ding, Liu Peng, Leng Yu-Xin. Supercontinuum enhancement and transfer induced by a plasma grating in air. Acta Physica Sinica, 2012, 61(18): 184209. doi: 10.7498/aps.61.184209
    [6] Wang Yan-Bin, Xiong Chun-Le, Hou Jing, Lu Qi-Sheng, Peng Yang, Chen Zi-Lun. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers. Acta Physica Sinica, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [7] Qiao Li, Feng Ming, Liu Zu-Xue, Meng Jie, Lü Ke-Cheng. Nonlinear propagation and supercontinuum generation of a femtosecond pulse in silicon waveguide. Acta Physica Sinica, 2011, 60(10): 100504. doi: 10.7498/aps.60.100504
    [8] Chen Dong, Yu Ben-Hai, Tang Qing-Bin. A broadband supercontinuum generated by helium atom exposed to combined mid-infrared laser field. Acta Physica Sinica, 2010, 59(7): 4564-4570. doi: 10.7498/aps.59.4564
    [9] Ji Zhong-Gang, Wang Zhan-Xin, Liu Jian-Sheng, Li Ru-Xin. Influence of quadratic phase existing in the initial condition on the dynamics of femtosecond laser pulse filamentation. Acta Physica Sinica, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [10] Li Qian-Guang, Lan Peng-Fei, Hong Wei-Yi, Zhang Qing-Bin, Lu Pei-Xiang. Propagation characteristics of the broadband supercontinuum with an attosecond ionization gate. Acta Physica Sinica, 2009, 58(8): 5679-5684. doi: 10.7498/aps.58.5679
    [11] Cao Shi-Ying, Song Zhen-Ming, Qin Yu, Wang Qing-Yue, Zhang Zhi-Gang. Difference in filament and spectrum broadening induced by femtosecond pulses in argon gas with a temperature gradient at different positions. Acta Physica Sinica, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [12] Liu Wei-Hua, Song Xiao-Zhong, Wang Yi-Shan, Liu Hong-Jun, Zhao Wei, Liu Xue-Ming, Peng Qin-Jun, Xu Zu-Yan. Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [13] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [14] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Probing the spectrum evolution of femtosecond pulse filament in argon gas with a hollow fiber. Acta Physica Sinica, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [15] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Effects of target thickness on emission direction of hot electrons generated from subrelativistic intensity laser pulses interacting with foil targets. Acta Physica Sinica, 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [16] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [17] Liu Wei-Hua, Wang Yi-Shan, Liu Hong-Jun, Duan Zuo-Liang, Zhao Wei, Li Yong-Fang, Peng Qin-Jun, Xu Zu-Yan. Effect of initial chirp on supercontinuum generation by femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [18] Cheng Chun-Fu, Wang Xiao-Fang, Lu Bo. Nonlinear propagation and supercontinuum generation of a femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [19] Duan Zuo-Liang, Chen Jian-Ping, Fang Zong-Bao, Wang Xing-Tao, Li Ru-Xin, Lin Li-Huang, Xu Zhi-Zhan. Evolvement of filamentation of femtosecond laser pulses of a kHz repetition rate propagating in Air. Acta Physica Sinica, 2004, 53(2): 473-477. doi: 10.7498/aps.53.473
    [20] Li Shu-Guang, Ji Yu-Ling, Zhou Gui-Yao, Hou Lan-Tian, Wang Qing-Yue, Hu Ming-Lie, Li Yan-Feng, Wei Zhi-Yi, Zhang Jun, Liu Xiao-Dong. Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
Metrics
  • Abstract views:  5864
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2018
  • Accepted Date:  23 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回