-
Highly-integrated high-reliability widely-tunable femtosecond laser sources have important application values in various research and application fields, such as ultrafast spectroscopy, quantum optics, remote sensing and bio-imaging. In multi-photon excited fluorescence microscopy, femtosecond laser sources with moderate pulse energy and wide wavelength tunable range can not only meet the application requirements of the different tissue structures for the peak power and excitation wavelength, but also improve the nonlinear fluorescence efficiency and imaging resolution of the sample, and thus enhancing the penetration depth. Considering the extensive application prospect and important scientific research significance of the widely tunable femtosecond laser, in this paper we conduct an experimental research of the high repetition rate multi-wavelength femtosecond laser generation in compact sized and low-cost configuration based on the nonlinear propagation scheme of the high peak power femtosecond laser pulses in single-mode fiber. In experiment, we first construct a highly-integrated reliable all-polarization-maintaining fiber femtosecond laser amplifier, which mainly consists of an environmentally stable all-polarization-maintaining fiber mode-locked laser oscillator, single-mode fiber stretcher, a single-mode power pre-amplifier, a dual-cladding Yb-fiber amplifier, and transmission grating-pair compressor. Self-starting mode-locked operation is assured with a semiconductor saturable absorber mirror, and intra-cavity dispersion compensation is realized by a chirped fiber Bragg grating in the mode-locked oscillator. The mode-locked oscillator, which delivers laser pulses with center wavelength peaked at 1035 nm, is robust operation as temperature changes from 10℃ to 40℃ and the measured power fluctuation is less than 1% RMS over 168 hours at 23℃. The amplified high repetition rate laser pulses are compressed in a double-pass 1000 lines/mm transmission grating-pair compressor. After compression, laser pulses with 5.83 W average power and 264 fs pulse duration at 34 MHz repetition rate can be obtained. Simultaneously, we also study the dependence of the compressed pulse duration on the amplified output power. Employing a home-made high reliable compact sized all-polarization-maintaining fiber femtosecond laser as a pump source and low-cost single-mode fiber as a nonlinear medium, the generation technology of the widely tunable femtosecond laser in only fiber format is also studied based on the self-phase modulation nonlinear spectral broadening mechanism. Simultaneously, in order to reduce the effect of the dispersion on the spectral broadening as much as possible, an 80-mm-long fiber is used in experiment. The used single-mode spectral broadening fiber has a 6-m-diameter core and 20 fs2/mm dispersion coefficient. By coupling the femtosecond pump laser pulses into the 6-m-diameter fiber core, the output spectrum presents a significant nonlinear broadening. The coupled pump power can be continuously adjusted by a combination of a half-wave plate and a Glan laser polarizer. After bandpass filtering the leftmost and rightmost spectral lobes in self-phase modulation and self-steeping induced broadened spectrum with bandpass filters centered at 980, 1000, 1050, 1070 and 1100 nm, the laser pulses with 203, 195, 196, 187, and 194 fs pulse duration can be obtained at the corresponding center wavelengths. The experimental scheme presented in this paper, which is based on the nonlinear spectral broadening of the highreliability femtosecond laser pulse in single-mode fiber and the spectral selectivity technology, provides a new research approach to the realization of the highly-compacted reliable widely-tunable femtosecond laser sources and has important research significance.
-
Keywords:
- single-mode fiber /
- nonlinearity /
- widely tunable /
- femtosecond laser
[1] Torrisi L 2018 Opt. Laser. Technol. 99 7
[2] Li C, Benedick A J, Fendel P, Glenday A G, Krtner F X, Phillips D F, Walsworth R L 2008 Nature 452 610
[3] Feuer A, Kunz C, Kraus M, Onuseit V, Weber R, Graf T, Ingildeev D, Hermanutz F 2014 Proc. SPIE 8967 89670H
[4] Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201
[5] Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011
[6] Tian W L, Wang Z H, Zhu J F, Wei Z Y 2016 Chin. Phys. B 25 014207
[7] Thomas H 2008 Optik Photonik 3 35
[8] Otto H J, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446
[9] Zhao J, Li W X, Wang C, Liu Y, Zeng H P 2014 Opt. Express 22 32214
[10] Rser F, Eidam T, Rothhardt J, Schmidt O, Schimpf D N, Limpert J, Tnnermann A 2007 Opt. Lett. 32 3495
[11] Kalaycioglu H, Oktem B, Şenel , Paltani P P, Ilday F 2010 Opt. Lett. 35 959
[12] Lv Z G, Teng H, Wang L N, Wang J L, Wei Z Y 2016 Chin. Phys. B 25 094208
[13] Lv Z G, Yang Z, Li F, Yang X J, Li Q L, Zhang X, Wang Y S, Zhao W 2018 Opt. Laser Technol. 100 282
[14] Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese) [王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]
[15] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]
[16] Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361
[17] Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tnnermann A 2015 Opt. Express 23 23968
[18] Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201
[19] Zhang L, Yang S G, Wang X J, Gou D D, Li X L, Chen H W, Chen M H, Xie S Z 2013 Opt. Lett. 38 4534
[20] Liu W, Li C, Zhang Z G, Krtner F X, Chang G Q 2016 Opt. Express 24 15328
-
[1] Torrisi L 2018 Opt. Laser. Technol. 99 7
[2] Li C, Benedick A J, Fendel P, Glenday A G, Krtner F X, Phillips D F, Walsworth R L 2008 Nature 452 610
[3] Feuer A, Kunz C, Kraus M, Onuseit V, Weber R, Graf T, Ingildeev D, Hermanutz F 2014 Proc. SPIE 8967 89670H
[4] Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201
[5] Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011
[6] Tian W L, Wang Z H, Zhu J F, Wei Z Y 2016 Chin. Phys. B 25 014207
[7] Thomas H 2008 Optik Photonik 3 35
[8] Otto H J, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446
[9] Zhao J, Li W X, Wang C, Liu Y, Zeng H P 2014 Opt. Express 22 32214
[10] Rser F, Eidam T, Rothhardt J, Schmidt O, Schimpf D N, Limpert J, Tnnermann A 2007 Opt. Lett. 32 3495
[11] Kalaycioglu H, Oktem B, Şenel , Paltani P P, Ilday F 2010 Opt. Lett. 35 959
[12] Lv Z G, Teng H, Wang L N, Wang J L, Wei Z Y 2016 Chin. Phys. B 25 094208
[13] Lv Z G, Yang Z, Li F, Yang X J, Li Q L, Zhang X, Wang Y S, Zhao W 2018 Opt. Laser Technol. 100 282
[14] Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese) [王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]
[15] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]
[16] Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361
[17] Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tnnermann A 2015 Opt. Express 23 23968
[18] Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201
[19] Zhang L, Yang S G, Wang X J, Gou D D, Li X L, Chen H W, Chen M H, Xie S Z 2013 Opt. Lett. 38 4534
[20] Liu W, Li C, Zhang Z G, Krtner F X, Chang G Q 2016 Opt. Express 24 15328
Catalog
Metrics
- Abstract views: 6349
- PDF Downloads: 96
- Cited By: 0