-
High-brightness broadband mid-infrared supercontinuum sources are highly demanded for many applications such as remote sensing, environmental monitoring, manufacturing industry, medical surgery and thermal imaging. For fulfilling these applications, high average power output is required. Compared with all other mid-infrared glass fibers, chalcogenide glass fiber possesses low phonon energy, long wavelength transmission edge, and high Kerr nonlinearity, thereby becoming a uniquely ideal nonlinear optical material for generating broadband mid-infrared supercontinuum. Unfortunately, due to weak chemical bonds forming the glass network, the commonly used As-S chalcogenide glass has a relatively low laser damage threshold. Thus from the material aspect, it limits high power yielded from a chalcogenide fiber based mid-infrared supercontinuum source. A chalcogenide glass host with enhanced laser damage threshold is therefore needed for further power scaling up of such a mid-infrared fiber supercontinuum. In this work, we introduce germanium into a traditional As-S glass system. The laser damage threshold of Ge-As-S glass is investigated systematically. A 3.6-μm femtosecond laser is employed as an excitation source. The relationship between the laser damage threshold and the glass composition indicates that of the studied Ge-As-S chalcogenide glasses, stoichiometric Ge0.25As0.1S0.65 glass possesses the highest laser damage threshold. In the following fiber design and fabrication, the optimized stoichiometric Ge0.25As0.1S0.65 glass therefore is chosen as a core material of the designed fiber, while a compatible Ge0.26As0.08S0.66 glass is selected as a cladding material. A step-index nonlinear fiber with a core diameter of 15 μm is fabricated by the traditional rod-in-tube method. The numerical aperture and the background loss of the fabricated Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber are ~0.24 and < 2 dB/m, respectively. Broadband mid-infrared supercontinuum is generated in the fiber by using an anomalous-dispersion pumping scheme. A 4.8-μm femtosecond laser with a pulse duration of 170 femtosecond and a repetition rate of 100 kHz is adopted as a pump source. The guidance of the fundamental mode is confirmed under low pump power level. With the increase of the pump power, the supercontinuum shows to be significantly broadened. Broadband supercontinuum ranging from 2.5 μm to 7.5 μm is generated in an only 10-cm-long fiber, when the maximum coupled pump power is 15 mW, equivalent to a peak power of 882 kW. The power output of the supercontinuum is 5.5 mW. All in all, the results indicate that the Ge-As-S chalcogenide glass fiber is a promising nonlinear medium for broadband mid-infrared supercontinuum sources with high brightness. [1] Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar
[2] Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958
[3] Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar
[4] Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar
[5] Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar
[6] Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar
[7] Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar
[8] Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar
[9] Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar
[10] Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar
[11] Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar
[12] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar
[13] Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar
[14] Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar
[15] Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar
[16] Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar
[17] Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar
[18] You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497
[19] Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar
[20] Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar
[21] Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar
[22] 李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar
Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar
[23] Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar
[24] Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar
[25] Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar
[26] Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar
[27] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar
Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar
[28] Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar
[29] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar
Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar
[30] Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar
[31] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar
[32] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar
[33] Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar
[34] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar
[35] Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar
[36] Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar
-
图 7 (a) Ge-As-S光纤输出光斑; (b) 采用4.8 μm激光(170 fs, 100 kHz)抽运芯径为15 μm的Ge0.25As0.1S0.65/Ge0.26As0.08S0.66玻璃光纤获得的SC输出
Figure 7. (a) Measured light spot at the output end of the Ge-As-S fiber; (b) Measured SC generated in the Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber with a core diameter of 15 µm when pumped at 4.8 µm (170 fs, 100 kHz).
表 1 Ge-As-S玻璃在中心波长为3.6 μm、脉冲宽度为170 fs、重复频率为100 kHz激光辐照下的Ith
Table 1. Ith of Ge-As-S glasses under the irradiation of 170 fs pulses with the repetition rates of 100 kHz at 3.6 μm.
Composition dS /at. % Ith/GW·cm–2 Ge0.1As0.1S0.8 45 462 Ge0.15As0.1S0.75 30 498 Ge0.1As0.2S0.7 20 550 Ge0.2As0.1S0.7 15 589 Ge0.15As0.2S0.65 5 609 Ge0.25As0.1S0.65 0 638 Ge0.2As0.2S0.6 –10 530 Ge0.3As0.1S0.6 –15 465 Ge0.25As0.20S0.55 –25 425 Ge0.35As0.1S0.55 –30 392 Ge0.3As0.2S0.5 –40 350 -
[1] Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar
[2] Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958
[3] Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar
[4] Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar
[5] Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar
[6] Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar
[7] Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar
[8] Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar
[9] Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar
[10] Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar
[11] Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar
[12] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar
[13] Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar
[14] Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar
[15] Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar
[16] Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar
[17] Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar
[18] You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497
[19] Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar
[20] Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar
[21] Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar
[22] 李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar
Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar
[23] Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar
[24] Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar
[25] Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar
[26] Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar
[27] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar
Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar
[28] Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar
[29] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar
Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar
[30] Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar
[31] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar
[32] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar
[33] Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar
[34] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar
[35] Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar
[36] Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar
Catalog
Metrics
- Abstract views: 6328
- PDF Downloads: 119
- Cited By: 0