Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation

Tian Kang-Zhen Hu Yong-Sheng Ren He Qi Si-Sheng Yang An-Ping Feng Xian Yang Zhi-Yong

Citation:

Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation

Tian Kang-Zhen, Hu Yong-Sheng, Ren He, Qi Si-Sheng, Yang An-Ping, Feng Xian, Yang Zhi-Yong
PDF
HTML
Get Citation
  • High-brightness broadband mid-infrared supercontinuum sources are highly demanded for many applications such as remote sensing, environmental monitoring, manufacturing industry, medical surgery and thermal imaging. For fulfilling these applications, high average power output is required. Compared with all other mid-infrared glass fibers, chalcogenide glass fiber possesses low phonon energy, long wavelength transmission edge, and high Kerr nonlinearity, thereby becoming a uniquely ideal nonlinear optical material for generating broadband mid-infrared supercontinuum. Unfortunately, due to weak chemical bonds forming the glass network, the commonly used As-S chalcogenide glass has a relatively low laser damage threshold. Thus from the material aspect, it limits high power yielded from a chalcogenide fiber based mid-infrared supercontinuum source. A chalcogenide glass host with enhanced laser damage threshold is therefore needed for further power scaling up of such a mid-infrared fiber supercontinuum. In this work, we introduce germanium into a traditional As-S glass system. The laser damage threshold of Ge-As-S glass is investigated systematically. A 3.6-μm femtosecond laser is employed as an excitation source. The relationship between the laser damage threshold and the glass composition indicates that of the studied Ge-As-S chalcogenide glasses, stoichiometric Ge0.25As0.1S0.65 glass possesses the highest laser damage threshold.In the following fiber design and fabrication, the optimized stoichiometric Ge0.25As0.1S0.65 glass therefore is chosen as a core material of the designed fiber, while a compatible Ge0.26As0.08S0.66 glass is selected as a cladding material. A step-index nonlinear fiber with a core diameter of 15 μm is fabricated by the traditional rod-in-tube method. The numerical aperture and the background loss of the fabricated Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber are ~0.24 and < 2 dB/m, respectively.Broadband mid-infrared supercontinuum is generated in the fiber by using an anomalous-dispersion pumping scheme. A 4.8-μm femtosecond laser with a pulse duration of 170 femtosecond and a repetition rate of 100 kHz is adopted as a pump source. The guidance of the fundamental mode is confirmed under low pump power level. With the increase of the pump power, the supercontinuum shows to be significantly broadened. Broadband supercontinuum ranging from 2.5 μm to 7.5 μm is generated in an only 10-cm-long fiber, when the maximum coupled pump power is 15 mW, equivalent to a peak power of 882 kW. The power output of the supercontinuum is 5.5 mW.All in all, the results indicate that the Ge-As-S chalcogenide glass fiber is a promising nonlinear medium for broadband mid-infrared supercontinuum sources with high brightness.
      Corresponding author: Feng Xian, xianfeng@jsnu.edu.cn ; Yang Zhi-Yong, yangzhiyong@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805109, 61575086), the Natural Science Foundation of Jiangsu Province (Grant No. BK20170229), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 18KJB180004)
    [1]

    Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [2]

    Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958

    [3]

    Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar

    [4]

    Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar

    [5]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar

    [6]

    Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar

    [7]

    Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar

    [8]

    Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar

    [9]

    Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar

    [10]

    Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar

    [11]

    Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar

    [12]

    Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [13]

    Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar

    [14]

    Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar

    [15]

    Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar

    [16]

    Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar

    [17]

    Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar

    [18]

    You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497

    [19]

    Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar

    [20]

    Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar

    [21]

    Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar

    [22]

    李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar

    Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar

    [23]

    Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar

    [24]

    Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [25]

    Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar

    [26]

    Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar

    [27]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [28]

    Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar

    [29]

    杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar

    Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar

    [30]

    Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar

    [31]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar

    [32]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar

    [33]

    Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar

    [34]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar

    [36]

    Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar

  • 图 1  SC测试实验装置示意图

    Figure 1.  Experimental setup for mid-infrared SC measurements

    图 2  Ge-As-S玻璃的Ith与化学组成的关联

    Figure 2.  Correlation between the Ith and dS of Ge-As-S glasses.

    图 3  Ge-As-S玻璃的 (a) 透过光谱(玻璃厚度为3.7 mm)和 (b) DSC曲线

    Figure 3.  (a) Transmission spectra and (b) DSC curves of Ge-As-S glasses.

    图 4  Ge-As-S玻璃的线性折射率n0及光纤的NA

    Figure 4.  Measured refractive indices of Ge-As-S glasses and the calculated NA of the fiber.

    图 5  Ge0.25As0.1S0.65玻璃和芯径为15μm的Ge0.25As0.1S0.65/Ge0.26As0.08S0.66光纤的色散曲线

    Figure 5.  Dispersion curves of Ge0.25As0.1S0.65 glass and Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber with a core diameter of 15 μm.

    图 6  Ge0.25As0.1S0.65/Ge0.26As0.08S0.66玻璃光纤的损耗谱, 插图为光纤的横截面

    Figure 6.  Attenuation of fabricated Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber. The inset is the cross section of the fiber.

    图 7  (a) Ge-As-S光纤输出光斑; (b) 采用4.8 μm激光(170 fs, 100 kHz)抽运芯径为15 μm的Ge0.25As0.1S0.65/Ge0.26As0.08S0.66玻璃光纤获得的SC输出

    Figure 7.  (a) Measured light spot at the output end of the Ge-As-S fiber; (b) Measured SC generated in the Ge0.25As0.1S0.65/Ge0.26As0.08S0.66 fiber with a core diameter of 15 µm when pumped at 4.8 µm (170 fs, 100 kHz).

    表 1  Ge-As-S玻璃在中心波长为3.6 μm、脉冲宽度为170 fs、重复频率为100 kHz激光辐照下的Ith

    Table 1.  Ith of Ge-As-S glasses under the irradiation of 170 fs pulses with the repetition rates of 100 kHz at 3.6 μm.

    CompositiondS /at. %Ith/GW·cm–2
    Ge0.1As0.1S0.845462
    Ge0.15As0.1S0.7530498
    Ge0.1As0.2S0.720550
    Ge0.2As0.1S0.715589
    Ge0.15As0.2S0.655609
    Ge0.25As0.1S0.650638
    Ge0.2As0.2S0.6–10530
    Ge0.3As0.1S0.6–15465
    Ge0.25As0.20S0.55–25425
    Ge0.35As0.1S0.55–30392
    Ge0.3As0.2S0.5–40350
    DownLoad: CSV
  • [1]

    Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [2]

    Yu Y, Gai X, Ma P, Vu K, Yang Z, Wang R, Choi D Y, Madden S, Luther-Davies B 2016 Opt. Lett. 41 958

    [3]

    Cheng T, Nagasaka K, Tuan T H, Xue X, Matsumoto M, Tezuka H, Suzuki T, Ohishi Y 2016 Opt. Lett. 41 2117Google Scholar

    [4]

    Shi H, Feng X, Tan F, Wang P, Wang P 2016 Opt. Mater. Express 6 3967Google Scholar

    [5]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong G K L, Travers J C, Russell P S J 2015 Nat. Photonics 9 133Google Scholar

    [6]

    Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, Wang X-g, Peng X, Zhang P, Shen X, Dai S, Nie Q, Wang R 2019 J. Am. Ceram. Soc. 102 5172Google Scholar

    [7]

    Wei H F, Chen S P, Hou J, Chen K K, Li J Y 2016 Chin. Phys. Lett. 33 64202Google Scholar

    [8]

    Boivin M, El-Amraoui M, Ledemi Y, Celarie F, Vallee R, Messaddeq Y 2016 Opt. Mater. Express 6 1653Google Scholar

    [9]

    Rezvani S A, Nomura Y, Ogawa K, Fuji T 2019 Opt. Express 27 24499Google Scholar

    [10]

    Li G, Peng X, Dai S, Wang Y, Xie M, Yang L, Yang C, Wei W, Zhang P 2018 J. Lightwave Technol. 37 1847Google Scholar

    [11]

    Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, Gai X, Wang R, Yang Z, Luther-Davies B 2016 J. Am. Ceram. Soc. 99 2565Google Scholar

    [12]

    Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, Shen X, Nie Q, Dai S, Wang R 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [13]

    Dai S, Wang Y, Peng X, Zhang P, Wang X, Xu Y 2018 Appl. Sci. 8 707Google Scholar

    [14]

    Yao C, Jia Z, Li Z, Jia S, Zhao Z, Zhang L, Feng Y, Qin G, Ohishi Y, Qin W 2018 Optica 5 1264Google Scholar

    [15]

    Gattass R R, Shaw L B, Nguyen V Q, Pureza P C, Aggarwal I D, Sanghera J S 2012 Opt. Fiber Technol. 18 345Google Scholar

    [16]

    Robichaud L R, Duval S, Pleau L P, Fortin V, Bah S T, Chatigny S, Vallee R, Bernier M 2020 Opt. Express 28 107Google Scholar

    [17]

    Zhang M, Li T, Yang Y, Tao H, Zhang X, Yuan X, Yang Z 2019 Opt. Mater. Express 9 555Google Scholar

    [18]

    You C, Dai S, Zhang P, Xu Y, Wang Y, Xu D, Wang R 2017 Sci. Rep. 7 6497

    [19]

    Zhu L, Yang D, Wang L, Zeng J, Zhang Q, Xie M, Zhang P, Dai S 2018 Opt. Mater. 85 220Google Scholar

    [20]

    Zhang Y, Xu Y, You C, Xu D, Tang J, Zhang P, Dai S 2017 Opt. Express 25 8886Google Scholar

    [21]

    Messaddeq S H, Vallee R, Soucy P, Bernier M, El-Amraoui M, Messaddeq Y 2012 Opt. Express 20 29882Google Scholar

    [22]

    李铜铜, 张鸣杰, 田康振, 张翔, 袁孝, 杨安平, 杨志勇 2019 光学学报 39 1016001Google Scholar

    Li T T, Zhang M J, Tian K Z, Zhang X, Yuan X, Yang A P, Yang Z Y 2019 Acta Opt. Sin. 39 1016001Google Scholar

    [23]

    Zhang M, Li L, Li T, Wang F, Tian K, Tao H, Feng X, Yang A, Yang Z 2019 Opt. Express 27 29287Google Scholar

    [24]

    Sun M, Yang A, Zhang X, Ma H, Zhang M, Tian K, Feng X, Yang Z 2019 J. Am. Ceram. Soc. 102 6600Google Scholar

    [25]

    Zhang M, Yang Z, Zhao H, Yang A, Li L, Tao H 2017 J. Alloys Compd. 722 166Google Scholar

    [26]

    Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P 2019 J. Eur. Ceram. Soc. 39 3373Google Scholar

    [27]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [28]

    Liu L, Zheng X, Xiao X, Xu Y, Cui X, Cui J, Guo C, Yang J, Guo H 2019 Opt. Mater. Express 9 3582Google Scholar

    [29]

    杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇 2016 物理学报 65 127801Google Scholar

    Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K, Yang Z Y 2016 Acta Phys. Sin. 65 127801Google Scholar

    [30]

    Yang Y, Zhang B, Yang A, Yang Z, Lucas P 2015 J. Phys. Chem. B 119 5096Google Scholar

    [31]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D, Tao G, Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389Google Scholar

    [32]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439Google Scholar

    [33]

    Nguyen V Q, Sanghera J S, Kung F H, Aggarwal I D, Lloyd I K 1999 Appl. Opt. 38 3206Google Scholar

    [34]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615Google Scholar

    [36]

    Eftekhar M A, Wright L G, Mills M S, Kolesik M, Correa R A, Wise F W, Christodoulides D N 2017 Opt. Express 25 9078Google Scholar

  • [1] Li He, Chen An-Min, Yu Dan, Li Su-Yu, Jin Ming-Xing. Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution. Acta Physica Sinica, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [2] Zhang Xin-Ben, Luo Xing, Cheng Lan, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Visible supercontinuum generation in dual-concentric-core-like photonic-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [3] Zhao Yuan-Yuan, Zhou Gui-Yao, Li Jian-She, Han Ying, Wang Chao, Wang Wei. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence. Acta Physica Sinica, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [4] Zhu Xian, Zhang Xin-Ben, Xiang Chen, Peng Jing-Gang, Dai Neng-Li, Li Hai-Qing, Li Jin-Yan. Experimental study on supercontinuum generation in zero-dispersion wavelength decreasing photonic crystal fiber. Acta Physica Sinica, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [5] Wang Wei-Bin, Yang Hua, Tang Ping-Hua, Han Fang. Soliton trapping of dispersive waves during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2013, 62(18): 184202. doi: 10.7498/aps.62.184202
    [6] Jin Ai-Jun, Wang Ze-Feng, Hou Jing, Guo Liang, Jiang Zong-Fu. Coherence properties of the supercontinuum generated in anomalous dispersion region of photonic crystal fibers. Acta Physica Sinica, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [7] Li Jian-Feng, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of soliton trapping of the supercontinuum in photonic crystal fiber. Acta Physica Sinica, 2012, 61(12): 124203. doi: 10.7498/aps.61.124203
    [8] Song Rui, Hou Jing, Chen Sheng-Ping, Wang Yan-Bin, Lu Qi-Sheng. All-fiber 177.6 W supercontinuum source. Acta Physica Sinica, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [9] Wang Yan-Bin, Xiong Chun-Le, Hou Jing, Lu Qi-Sheng, Peng Yang, Chen Zi-Lun. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers. Acta Physica Sinica, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [10] Liu Kun-Long, Hong Wei-Yi, Wang Shao-Yi, Zhang Qing-Bin, Lu Pei-Xiang. Efficient generation of ultra-broadband supercontinuum in the mid-infrared polarization gating. Acta Physica Sinica, 2011, 60(6): 063203. doi: 10.7498/aps.60.063203
    [11] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [12] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [13] Zhang Li-Ping, Li Hai-Ning, Wu Hong, Li Xian, Ding Liang-En. Ultrabroadband continuum spectrum generated in Ar gas. Acta Physica Sinica, 2008, 57(2): 904-908. doi: 10.7498/aps.57.904
    [14] Liu Wei-Hua, Song Xiao-Zhong, Wang Yi-Shan, Liu Hong-Jun, Zhao Wei, Liu Xue-Ming, Peng Qin-Jun, Xu Zu-Yan. Experimental research of supercontinuum generation by femtosecond pulse in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [15] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [16] Chen Yong-Zhu, Li Yu-Zhong, Qu Gui, Xu Wen-Cheng. Numerical research of flat wideband supercontinuum generation in anomalous dispersion-flattened fibers. Acta Physica Sinica, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [17] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [18] Liu Wei-Hua, Wang Yi-Shan, Liu Hong-Jun, Duan Zuo-Liang, Zhao Wei, Li Yong-Fang, Peng Qin-Jun, Xu Zu-Yan. Effect of initial chirp on supercontinuum generation by femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [19] Cheng Chun-Fu, Wang Xiao-Fang, Lu Bo. Nonlinear propagation and supercontinuum generation of a femtosecond pulse in photonic crystal fibers. Acta Physica Sinica, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [20] Li Shu-Guang, Ji Yu-Ling, Zhou Gui-Yao, Hou Lan-Tian, Wang Qing-Yue, Hu Ming-Lie, Li Yan-Feng, Wei Zhi-Yi, Zhang Jun, Liu Xiao-Dong. Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 478-483. doi: 10.7498/aps.53.478
Metrics
  • Abstract views:  6328
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2020
  • Accepted Date:  28 September 2020
  • Available Online:  02 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回