-
In recent years, the polymers represented by macromolecular materials have attracted widespread attention due to their higher flexibility and viscoelastic, compared with other materials used for light absorption (such as semiconductor materials, carbon-based materials and noble metal nanomaterials). Although the polymers have shown potential applications in the photothermal field, compared with other light-absorbing materials, the polymer substrates have a low light absorption rate and a narrow absorption bandwidth concentrated in the visible light band. Therefore, it is necessary to prepare a structure on the polymer material layer for absorbing light, thereby improving the ability of the polymer to absorb light. In addition, since the existing preparation processes of polymer absorption structures require the use of templates and the processes are relatively complicated, there is an urgent need for a simple and easy process to prepare the absorption structures on the polymer material layer. In this article, composite nanoforests are prepared on polymer substrates based on a plasma repolymerization technology and magnetron sputtering process; due to the metallic nanoparticles existing, multi-hybrid plasmonic effect is achieved, thus the average light absorption rate of the polymer in a wavelength range of 380–2500 nm is increased from 23.34% to 74.56%. Such polymer composite nanoforests have high absorption characteristics in a wide spectral range. The method of preparing the structure is quite simple, and can be applied to preparing different polymer materials. Besides, by changing the plasma bombardment time, the morphology of the nanoforests can be adjusted; by increasing the size of the metallic nanoparticles, the absorption of the composite nanoforests can be increased. It is foreseeable that the polymer composite nanoforests will have applications in various optical devices.
-
Keywords:
- plasma repolymerization /
- composite nanoforests /
- light absorbing structures /
- plasmon multi-hybrid
[1] Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar
[2] Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar
[3] Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar
[4] Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar
[5] Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar
[6] Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar
[7] Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar
[8] Henrik L 2007 Energy 32 912Google Scholar
[9] Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar
[10] Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar
[11] Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar
[12] Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar
[13] Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar
[14] Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar
[15] Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar
[16] Mao H, Ou W 2015 US Patent 9 117 949
[17] Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar
[18] Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar
[19] Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar
[20] Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar
[21] Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar
[22] Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar
[23] Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1
[24] Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951
[25] Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107
[26] Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar
[27] Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185
[28] Auer S, Frenkel D 2001 Nature 413 711Google Scholar
[29] Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar
[30] Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar
[31] Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar
[32] Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar
[33] Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar
[34] Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar
[35] Gesquiere A J 2010 J. Am. Chem. Soc. 132 400
[36] Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar
[37] Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar
[38] Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar
[39] Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar
[40] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar
[41] Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar
[42] Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar
[43] Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar
-
图 1 在PI表面上制备纳米纤维森林结构的工艺流程及各步骤所获得结构的SEM图 (a) 未经处理的PI表面SEM图; (b) 30 min氧等离子体轰击后PI表面的SEM图; (c) 30 min氩等离子体轰击后PI表面的SEM图; (d) 30 min氧和30 min氩等离子体依次轰击后PI表面的SEM图
Figure 1. Preparation process and SEM images of nanofiber forests on the surface of PI substrate: (a) SEM image of untreated PI surface; (b) SEM image of PI surface bombarded by 30 min oxygen plasma; (c) SEM image of PI surface bombarded by 30 min argon plasma; (d) SEM image of PI surface bombarded by 30 min oxygen and 30 min argon plasma.
图 7 表面分布着不同粒径尺寸金纳米颗粒的PI复合纳米森林结构光吸收率 (a) 吸收谱图; (b) 光吸收率与金纳米颗粒粒径之间的关系曲线(插图为SEM图及样品照片)
Figure 7. Absorption rate of PI composite nanoforests with gold nanoparticles of different sizes: (a) Absorption spectra; (b) the change curve of light absorption rate of nanoforests with gold nanoparticles of different sizes (insets show images of the sample).
图 10 不同结构的电磁场增强FDTD仿真分析 (a) 基底表面电磁场分布; (b) 纳米纤维森林结构周围的电磁场分布; (c) 复合纳米森林结构周围的电磁场分布
Figure 10. FDTD simulation analysis of different structures: (a) Distribution of electric field on the substrate surface; (b) distribution of electric field around a nanofiber; (c) distribution of electric field around a composite nanofiber.
-
[1] Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar
[2] Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar
[3] Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar
[4] Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar
[5] Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar
[6] Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar
[7] Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar
[8] Henrik L 2007 Energy 32 912Google Scholar
[9] Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar
[10] Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar
[11] Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar
[12] Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar
[13] Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar
[14] Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar
[15] Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar
[16] Mao H, Ou W 2015 US Patent 9 117 949
[17] Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar
[18] Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar
[19] Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar
[20] Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar
[21] Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar
[22] Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar
[23] Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1
[24] Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951
[25] Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107
[26] Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar
[27] Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185
[28] Auer S, Frenkel D 2001 Nature 413 711Google Scholar
[29] Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar
[30] Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar
[31] Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar
[32] Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar
[33] Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar
[34] Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar
[35] Gesquiere A J 2010 J. Am. Chem. Soc. 132 400
[36] Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar
[37] Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar
[38] Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar
[39] Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar
[40] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar
[41] Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar
[42] Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar
[43] Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar
Catalog
Metrics
- Abstract views: 5711
- PDF Downloads: 98
- Cited By: 0