Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Raman probe based on hollow-core microstructured fiber

Sheng Zi-Cheng Wang Teng Zhou Gui-Yao Xia Chang-Ming Liu Jian-Tao Li Bo-Yao Fan Hai-Xia Chen Yun Hou Zhi-Yun

Citation:

Raman probe based on hollow-core microstructured fiber

Sheng Zi-Cheng, Wang Teng, Zhou Gui-Yao, Xia Chang-Ming, Liu Jian-Tao, Li Bo-Yao, Fan Hai-Xia, Chen Yun, Hou Zhi-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Surface-enhanced Raman scattering (SERS) technology can effectively enhance the Raman signal of sample molecules. It has a higher sensitivity to detect biomolecule and thus has many potential applications in biochemistry. The combination of hollow-core microstructured fiber and SERS technology not only enables remote real-time and distributed detection, but also can increase the effective action area between the light field and the object to be measured, and further reduce silica glass background signal that is unavoidable in traditional fiber probes. In this paper, the hollow-core microstructure fiber Raman probes with excellent performance are investigated from the aspects of fiber preparation and SERS experi-mental testing. First, we design and manufacture a kind of hollow-core microstructured fiber with multi-bands in the visible and near-infrared wavelength. The fibers show good light guide performance and thus can fully meet the requirements for surface-enhanced Raman excitation and signal transmission. At the same time, the large core size facilitates the coupling of excitation light, and provides enough room for the test object and the light field. Then, this hollow-core microstructured fiber is used in surface-enhanced Raman experiment. A layer of nano-Ag film is modified on the inner surface of the hollow-core microstructure fiber to prepare the SERS probe by the vacuum physical sputtering method, and Rhodamine 6G (R6G) alcohol solutions with different concentrations are prepared by the dilution method. The hollow-core microstructured fiber deposited with the Ag nano-film is immersed in R6G alcohol solution for 2 min. The alcohol solution of R6G is sucked into the air hole of the hollow-core microstructured fiber by the capillary effect. Then this fiber with R6G alcohol solution is placed in a drying oven at 40 ℃ for 3 h until the alcohol solvent in the air hole is completely volatilized. After that, this fiber is taken out and tested under a detection environment full with air. The fiber SERS probes are tested by microscopic confocal Raman spectroscopy, then the Raman spectra of R6G alcohol solvents with different concentrations are obtained. An R6G Raman signal with a concentration as low as 10-9 mol/L is successfully detected on the front side of the probe. In the far-end back-side detection mode, the detected concentration of SERS probe can be less than 10-6 mol/L. The designed hollow-core microstructured fiber probe has a simple structure and is easy to prepare and test. Compared with the traditional optical fiber, it has advantages of large effective area for the test object and the light field, small interference from the silica glass background signal. This hollow-core microstructured fiber probe has wide application prospects in biochemical detection and other fields.
      Corresponding author: Hou Zhi-Yun, houzhiyun@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575066), the Key Program of the National Natural Science Foundation of China (Grant No. 61735005), the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61527822), the Science and Technology Program of Guangzhou, China (Grant No. 2017KZ010101), and the Project supported by GDUPS (2017).
    [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [4]

    Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103

    [5]

    Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270

    [6]

    Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810

    [7]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [8]

    Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380

    [9]

    Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [10]

    Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408

    [11]

    Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 物理学报 66 044208]

    [12]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [13]

    Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610

    [14]

    Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586

    [15]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307

    [16]

    Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599

    [17]

    Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293

    [18]

    Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371

    [19]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101

    [20]

    Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504

    [21]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209

    [22]

    Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195

    [23]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021

    [24]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935

  • [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [4]

    Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S 2010 Rev. Sci. Instrum. 81 123103

    [5]

    Andrade G F S, Fan M, Brolo A G 2010 Biosens. Bioelectron. 25 2270

    [6]

    Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z 2016 Biomed. Opt. Express 7 810

    [7]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [8]

    Balu M, Liu G, Chen Z, Tromberg B J, Potma E O 2010 Opt. Express 18 2380

    [9]

    Zhang Y, Gu C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [10]

    Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y 2016 Appl. Opt. 55 5408

    [11]

    Guo X D, Tang J, Liu W Y, Guo H, Fang G C, Zhao M M, Wang L, Xia M J, Liu J 2017 Acta Phys. Sin. 66 044208 (in Chinese) [郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊 2017 物理学报 66 044208]

    [12]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [13]

    Yang X, Shi C, Newhouse R, Zhang J Z, Gu C 2011 Int. J. Opt. 2011 754610

    [14]

    Yan D, Popp J, Pletz M W, Frosch T 2018 Anal. Methods 10 586

    [15]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2007 Biomed. Opt. 6433 643307

    [16]

    Khetani A, Momenpour A, Alarcon E I, Anis H 2015 Biomed. Opt. Express 6 4599

    [17]

    Dinish U S, Fu C Y, Soh K S, Ramaswamy B, Kumar A, Olivo M 2012 Biosens. Bioelectron. 33 293

    [18]

    Ghenuche P, Rammler S, Joly N Y, Scharrer M, Frosz M, Wenger J 2012 Opt. Lett. 37 4371

    [19]

    Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J 2006 Appl. Phys. Lett. 89 204101

    [20]

    Zhang Y, Shi C, Gu C, Seballos L, Zhang J Z 2007 Appl. Phys. Lett. 90 193504

    [21]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M 2017 Optica 4 209

    [22]

    Zhang N, Humbert G, Gong T, Shum P P, Li K, Auguste J L 2016 Sens. Actu. B 223 195

    [23]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R 2016 Nat. Rev. Mater. 1 16021

    [24]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. 88 5935

  • [1] He Xiao-Tian, Xu Jin-Liang, Cheng Yi-Wei. Measurements and identification of supercritical pseudo-boiling heat transfer modes based on fiber optic probes and multiscale entropy. Acta Physica Sinica, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [3] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [4] Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber. Acta Physica Sinica, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [5] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun. Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering. Acta Physica Sinica, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [7] Wang Xin, Lou Shu-Qin, Lian Zheng-Gang. Experimental research on the dispersion property of hollow core photonic bandgap fiber. Acta Physica Sinica, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [8] Lu Nai-Yan, Yu Xue-Jian, Wan Jia-Wei, Weng Yu-Yan, Guo Jun-Hong, Liu Yu. Surface plasmon resonance coupling effect of micro-patterned gold film. Acta Physica Sinica, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [9] Yan Xue-Guo, Shen Yi, Pan Cong, Li Peng, Ding Zhi-Hua. Tapered structure based all-fiber probe for endoscopic optical coherence tomography. Acta Physica Sinica, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [10] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [11] Liu Gui-Yuan, Song Hong-Sheng, Zhang Ning-Yu, Cheng Chuan-Fu. Phase singularities in femtosecond laser pulses transmitting through optical fiber probes. Acta Physica Sinica, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [12] Zhang Yin, Chen Ming-Yang, Zhou Jun, Zhang Yong-Kang. Investigation on large-mode-area flat-topped optical fiber with microstructured core and its transmission characteristics. Acta Physica Sinica, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [13] Cheng Sheng-Fei, Peng Jing-Gang, Li Jin-Yan, Cheng Lan, Jiang Zuo-Wen, Li Hai-Qing, Dai Neng-Li, Jiang Fa-Gang, Yang Xiao-Bo. The surface modes loss control of hollow-core photonic crystal fibers. Acta Physica Sinica, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [14] Rao Yun-Jiang, Li Li, Jia Xin-Hong, Ran Zeng-Ling, Zhang Tian-Hu. Long-distance optical fiber transmission system based on hybrid Raman amplification. Acta Physica Sinica, 2010, 59(7): 4682-4686. doi: 10.7498/aps.59.4682
    [15] Zhang Mei-Yan, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Fu Bo, Yin Guo-Bing. Influence of micro-structured core on characteristics of photonic crystal fibers. Acta Physica Sinica, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [16] Liu Gui-Yuan, Teng Shu-Yun, Cheng Chuan-Fu, Song Hong-Sheng, Liu Man. Propagation of femtosecond laser pulses through metal-coated tapered fibre probe. Acta Physica Sinica, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [17] Ji Ling-Ling, Lu Pei-Xiang, Chen Wei, Dai Neng-Li, Zhang Ji-Huang, Jiang Zuo-Wen, Li Jin-Yan, Li Wei. Four-wave-mixing process in secondary cores of a microstructured fiber. Acta Physica Sinica, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [18] Xu Kai, Pan Shi, Wu Shi-Fa, Sun Wei, Li Yin-Li. Fabrication of bend optical fibre probes by heated pulling combined with chemica l ething. Acta Physica Sinica, 2003, 52(5): 1190-1195. doi: 10.7498/aps.52.1190
    [19] ZHANG LI-YUAN, LI YONG-GUI, WANG QIAN-. PREPARATION OF OPTICAL PROBES FOR SCANNING NEAR-FIELD INFRARED MICROSCOPY BY ETCHING METHOD. Acta Physica Sinica, 2001, 50(12): 2322-2326. doi: 10.7498/aps.50.2322
    [20] Zhou Qing, Zhu Xinag, Li Hong-Fu. . Acta Physica Sinica, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
Metrics
  • Abstract views:  6875
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2018
  • Accepted Date:  11 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回