-
采用基于第一性原理的赝势平面波方法,研究了ABO3钙钛矿复合氧化物BaTiO3中A位离子被Bi原子取代后对其构型、电子及能带结构的影响.计算结果表明,Bi取代Ba之后会降低BaTiO3的对称性,空间点群随着取代量的变化而变化,结合能逐渐降低.通过能带结构的计算发现BixBa1-xTiO3为直接带隙型半导体.Bi的取代可调节BixBa1-xTiO3的禁带宽度,从x=0.125到x=0.625时,Bi的取代量越大,其带隙越宽,吸收光谱蓝移.x0.625时,禁带宽度又逐渐减小,吸收光谱红移.由态密度图可看出,其价带顶主要是O-2p与Bi-6s态杂化而成,导带底主要由Ti-3d态构成.
-
关键词:
- BixBa1-xTiO3 /
- 结合能 /
- 电子结构 /
- 光吸收谱
Some perovskite structured catalysts have narrower forbidden band widths than pure TiO2, and they have been widely used in a number of photo-catalytic reactions. The ions in the perovskite may be replaced by other ions while maintaining the structure unchanged for its tailorable character. BiTiO can form into the typical perovskite composite oxide BiTiO3 under specific preparation conditions. The regulation of the energy gap of the perovskite BaTiO3 can be realized by substituting Bi for Ba to form the BixBa1-xTiO3 perovskite structure to improve its photo-catalytic activity. But the improvement mechanism and the electron and band structures of BixBa1-xTiO3 are still not very clear. In this study, we exhibit a detailed theoretical investigation to predict the electronic structure, band gap and optical absorption properties of BixBa1-xTiO3 structures based on the first-principles plane-wave ultrasoft pseudopotential method. The exchange and correlation interactions are modeled using the generalized gradient approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional. The cutoff kinetic energy of the electron wave function is 340 eV, and the k-point sampling sets 333 division of the reciprocal unit cell based on the Monkhorst-Pack scheme. In the geometrical optimization, all forces on atoms are converged into less than 110-5 eV/atom, the maximum ionic displacement is within 0.001 and the total stress tensor decreases to the order of 0.05 GPa. The DFT calculation results reveal that the symmetry and binding energy decline in the BixBa1-xTiO3 structure, and the bond lengths of BaO and TiO decrease a little after Ba has been substituted by Bi atom, except for the structure of Bi0.5Ba0.5TiO3. The photo-catalysts of BixBa1-xTiO3 are direct band gap semiconductors, and the substitution Bi can regulate the band gaps of BixBa1-xTiO3. The band gaps become wider from x=0.125 to x=0.750 with the carrier concentration decreasing, and then decreases with the higher carrier concentration increasing when x=0.875. It is predicted that the band width of Bi-based perovskite will be much lower than that of Ba-based perovskite. In the case of the density of states we reveal that the top of the valence band is hybrided by O-2p and Bi-6s and the bottom of the conduction band state is mainly constituted by the Ti-3d state. The electron transport properties and carrier types are mainly determined by Ti-3d, O-2p state and Ba-5p electronic states in BaTiO3 and Ti-3d, O-2p, Bi-6s and Bi-6p electronic states in BixBa1-xTiO3 respectively. The absorption spectra indicate that the ultraviolet absorption performance can be improved in BixBa1-xTiO3 system, which may effectively improve the photo-catalytic activity of BaTiO3.-
Keywords:
- BixBa1-xTiO3 /
- binding energy /
- electronic structure /
- absorption spectra
[1] Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673
[2] Kazuya N, Akira F 2012 J. Photoch. Photobi. C: Photoch. Rev. 13 169
[3] Zhu X H, Hang Q M, Xing Z M, Yang Y, Zhu J M, Liu Z G, Ming N B, Zhou P, Song Y, Li Z S, Yu T, Zou Z G 2011 J. Am. Ceram. Soc. 94 2688
[4] Hou J G, Jiao S Q, Zhu H M 2011 J. Solid. State. Chem. 184 154
[5] Tayyebeh S, Byeong-Kyu L 2016 J. Hazard. Mater. 316 122
[6] Tong T, Zhang H, Chen J G, Jin D R, Cheng J R 2016 Catal. Commun. 87 23
[7] Pea M A, Fierro J L G 2001 Chem. Rev. 101 1981
[8] Sitko D, Bak W, Garbarz-Glos B, Budziak A, Kajtoch C Kalvane A 2013 Mat. Sci. Eng. 49 012050
[9] Xian T, Di L J, Ma J, Sang C C, Wei X G, Zhou Y J 2017 Chin. J. Mater. Res. 31 102(in Chinese) [县涛, 邸丽景, 马俊, 桑萃萃, 魏学刚, 周永杰 2017 材料研究学报 31 102]
[10] Wang P G, Fan C M, Wang Y W, Ding G Y, Yuan P H 2013 Mater. Res. Bull. 48 869
[11] Devi L G, Krishnamurthy G 2011 J. Phys. Chem. A 115 460
[12] Cui Y F, Briscoe J, Dunn S 2013 J. Chem. Mater. 25 4215
[13] Sarveswaran G, Subramanian B, Mohan S 2014 J. Mater. Chem. C 2 6835
[14] He C, Ma Z J, Sun B Z, Sa R J, Wu K C 2015 J. Alloys Compd. 623 393
[15] Li Z X, Shen Y, Guan Y H, Hu Y H, Lin Y H, Nan C W 2014 J. Mater. Chem. A 2 1967
[16] Klara R, Roberto K, Mnica R, Hans H R, Frank-Dieter K, Anett G 2014 Chem. Eng. J. 239 322
[17] Xu X H, Yao W F, Zhang Y, Zhou A Q, Hou Y, Wang M 2005 Acta Chim. Sin. 63 5(in Chinese) [许效红, 姚伟峰, 张寅, 周爱秋, 侯云, 王民 2005 化学学报 63 5]
[18] Wei W, Dai Y, Huang B B 2009 J. Phys. Chem. C 113 5658
[19] Murugesan S K, Muhammad N H, Yanfa Y, Mowafak M J, Vaidyanathan S 2010 J. Phys. Chem. C 114 10598
[20] Baedi F, Mircholi H 2015 Optik 126 1505
[21] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75
[22] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[23] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504
[24] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[25] Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891
[26] Zhao Y Q, Wang X, Liu B, Yu Z L, Yu H L 2018 Org. Electron. 53 50
[27] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[28] Milman V, Refson K, Clark S J, Pickard C J, Yates J R, Gao S P, Hasnip P J, Probert M I J, Perlov A, Segall M D 2010 J. Mol. Struct.: Theochem. 954 22
[29] Luo Z F, Cen W F, Fan M H, Tang J J, Zhao Y J 2015 Acta Phys. Sin. 64 147102(in Chinese) [骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军 2015 物理学报 64 147102]
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201(in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]
[32] Ma L, Yin Y P, Ding X B, Dong C Z 2017 Acta Phys. Sin. 66 063101(in Chinese) [马磊, 殷耀鹏, 丁晓彬, 董晨钟 2017 物理学报 66 063101]
[33] Suzuki K, Kijima K 2005 Jpn. J. Appl. Phys. 44 2081
[34] Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi 243 2054
[35] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592(in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[36] Zhao Y Q, Wu L J, Liu B, Wang L Z, Cai M Q 2016 J. Power Sources 313 96
[37] Ren C, Li X Y, Luo Q W, Liu R P, Yang Z, Xu L C 2017 Acta Phys. Sin. 66 157101(in Chinese) [任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春 2017 物理学报 66 157101]
-
[1] Serpone N, Emeline A V 2012 J. Phys. Chem. Lett. 3 673
[2] Kazuya N, Akira F 2012 J. Photoch. Photobi. C: Photoch. Rev. 13 169
[3] Zhu X H, Hang Q M, Xing Z M, Yang Y, Zhu J M, Liu Z G, Ming N B, Zhou P, Song Y, Li Z S, Yu T, Zou Z G 2011 J. Am. Ceram. Soc. 94 2688
[4] Hou J G, Jiao S Q, Zhu H M 2011 J. Solid. State. Chem. 184 154
[5] Tayyebeh S, Byeong-Kyu L 2016 J. Hazard. Mater. 316 122
[6] Tong T, Zhang H, Chen J G, Jin D R, Cheng J R 2016 Catal. Commun. 87 23
[7] Pea M A, Fierro J L G 2001 Chem. Rev. 101 1981
[8] Sitko D, Bak W, Garbarz-Glos B, Budziak A, Kajtoch C Kalvane A 2013 Mat. Sci. Eng. 49 012050
[9] Xian T, Di L J, Ma J, Sang C C, Wei X G, Zhou Y J 2017 Chin. J. Mater. Res. 31 102(in Chinese) [县涛, 邸丽景, 马俊, 桑萃萃, 魏学刚, 周永杰 2017 材料研究学报 31 102]
[10] Wang P G, Fan C M, Wang Y W, Ding G Y, Yuan P H 2013 Mater. Res. Bull. 48 869
[11] Devi L G, Krishnamurthy G 2011 J. Phys. Chem. A 115 460
[12] Cui Y F, Briscoe J, Dunn S 2013 J. Chem. Mater. 25 4215
[13] Sarveswaran G, Subramanian B, Mohan S 2014 J. Mater. Chem. C 2 6835
[14] He C, Ma Z J, Sun B Z, Sa R J, Wu K C 2015 J. Alloys Compd. 623 393
[15] Li Z X, Shen Y, Guan Y H, Hu Y H, Lin Y H, Nan C W 2014 J. Mater. Chem. A 2 1967
[16] Klara R, Roberto K, Mnica R, Hans H R, Frank-Dieter K, Anett G 2014 Chem. Eng. J. 239 322
[17] Xu X H, Yao W F, Zhang Y, Zhou A Q, Hou Y, Wang M 2005 Acta Chim. Sin. 63 5(in Chinese) [许效红, 姚伟峰, 张寅, 周爱秋, 侯云, 王民 2005 化学学报 63 5]
[18] Wei W, Dai Y, Huang B B 2009 J. Phys. Chem. C 113 5658
[19] Murugesan S K, Muhammad N H, Yanfa Y, Mowafak M J, Vaidyanathan S 2010 J. Phys. Chem. C 114 10598
[20] Baedi F, Mircholi H 2015 Optik 126 1505
[21] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75
[22] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[23] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504
[24] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[25] Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891
[26] Zhao Y Q, Wang X, Liu B, Yu Z L, Yu H L 2018 Org. Electron. 53 50
[27] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[28] Milman V, Refson K, Clark S J, Pickard C J, Yates J R, Gao S P, Hasnip P J, Probert M I J, Perlov A, Segall M D 2010 J. Mol. Struct.: Theochem. 954 22
[29] Luo Z F, Cen W F, Fan M H, Tang J J, Zhao Y J 2015 Acta Phys. Sin. 64 147102(in Chinese) [骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军 2015 物理学报 64 147102]
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201(in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]
[32] Ma L, Yin Y P, Ding X B, Dong C Z 2017 Acta Phys. Sin. 66 063101(in Chinese) [马磊, 殷耀鹏, 丁晓彬, 董晨钟 2017 物理学报 66 063101]
[33] Suzuki K, Kijima K 2005 Jpn. J. Appl. Phys. 44 2081
[34] Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi 243 2054
[35] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592(in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
[36] Zhao Y Q, Wu L J, Liu B, Wang L Z, Cai M Q 2016 J. Power Sources 313 96
[37] Ren C, Li X Y, Luo Q W, Liu R P, Yang Z, Xu L C 2017 Acta Phys. Sin. 66 157101(in Chinese) [任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春 2017 物理学报 66 157101]
计量
- 文章访问数: 7332
- PDF下载量: 172
- 被引次数: 0