Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Attosecond relative delay measurement using transient-grating frequency-resolved optical grating

Huang Pei1\2\3 Fang Shao-Bo Huang Hang-Dong Zhao Kun Teng Hao Hou Xun Wei Zhi-Yi2\3

Citation:

Attosecond relative delay measurement using transient-grating frequency-resolved optical grating

Huang Pei1\2\3, Fang Shao-Bo, Huang Hang-Dong, Zhao Kun, Teng Hao, Hou Xun, Wei Zhi-Yi2\3
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The accurate and precise controlling of the attosecond time delay between the sub-pulses within a hundredth of an optical cycle is the key ingredient for the sophisticated custom-tailored coherent waveform synthesizer. The attosecond delay control technique commonly experiences the “complete” characterization of the ultrashort sub-cycle pulses, which includes the spatiotemporal pulse characterization of the synthesized waveform and the attosecond relative delay between the parent pulses. In this work, the relative time delay between spectrally separated ultrashort parent pulses is characterized in an interferometer scheme with a background-free transient-grating frequency-resolved optical grating (TG-FROG). The TG-FROG geometry accurately measures the full time-dependent intensity and phase of ultrashort laser pulses in a wide range of regime (from ultraviolet to infrared) and offers significant advantages over other nonlinear-optical processes geometries (i.e., the polarization-gate-FROG, the self-diffraction-FROG, the second-harmonic generation-FROG and the third-harmonic-generation-FROG). The attosecond measurement accuracy is achieved for the first time, to the best of our knowledge. In this experiment, the output of a carrier-envelope-phase-stable Ti:sapphire amplifier (sub-30-fs, over-1-mJ, 1 kHz) is spectrally broadened in a neon-filled hollow-core fiber with an inner diameter of 250μm. The transmission through the pressure-gradient hollow-core fiber results in an mJ-level octave-spanning whitelight supercontinuum, supporting a sub-3-fs Fourier transform-limited pulse. The supercontinuum is spectrally divided into two parent pulses by using a dichroic mirror. The sub-pulses are individually compressed by the custom-designed double-chirped mirrors and wedge pairs. The short and long wavelength pulses are separately compressed in few-cycle regime, yielding pulses with 6.7 fs and 9.8 fs, respectively. This technique overcomes the bottlenecks in the traditional delay measurement and should be applicable for many ultra-broadband pulse characterizations with extremely simple and alignment-free delay control device used. Furthermore, this new method will be easily adapted for the ultra-broadband two-dimensional electronic spectroscopy, the advanced temporal cloaking, and the field of sub-cycle arbitrary coherent waveform synthesizer for controlling strong-field interactions in atoms, molecules, solids, and nanostructures. We foresee that in the near future this novel technology will be very attractive for various applications in the next-generation light sources such as the Synergetic Extreme Condition User Facility in Beijing, China.
      Corresponding author: Fang Shao-Bo, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi2\3, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0110301), the National Natural Science Foundation of China (Grant No. 61575219), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB23030230), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. YZDJ-SSW-JSC006), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018007).
    [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [2]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [3]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon. Rev. 9 129

    [4]

    Mucke O D, Fang S B, Cirmi G, Maria Rossi G, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Eletron. Electron. 21 8700712

    [5]

    Fang S, Cirmi G, Chia S, Mucke O D, Kärtner F X, Manzoni C, Farinello P, Cerullo G 2013 Conference on Lasers and Electro-Optics Pacific Rim (OSA) Kyoto, Japan, June 30-July 4, 2013 pWB3_1

    [6]

    Schmid B E, Thire N, Boivin M, Laramee A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Legare F 2014 Nat. Commun. 5 3643

    [7]

    Krogen P, Suchowski H, Liang H, Flemens N, Hong K H, Kärtner F X, Moses J 2017 Nat. Photon. 11 222

    [8]

    Fang S, Tanigawa T, Ishikawa K L, Karasawa N, Yamashita M 2011 J. Opt. Soc. Am. B 28 1

    [9]

    Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X, Xu Z Z 2013 Phys. Rev. Lett. 110 233903

    [10]

    Takahashi E J, Lan P, Mucke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691

    [11]

    Jin C, Wang G, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003

    [12]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [13]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [14]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kärtner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [15]

    Fang S, Mainz R, Rossi G M, Yang Y, Cirmi G, Chia S, Manzoni C, Cerullo G, Mucke O D, Kartner F X 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference Munich, Germany, June 21-25, 2015 pCG_P_4

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Trebino R, DeLong K W, Fittinghoff D N, Sweetser J N, Krumbugel M A, Richman B A 1997 Rev. Sci. Instrum. 68 3277

    [18]

    Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829

    [19]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S, Xiao M 2017 Opt. Express 25 21115

    [20]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62

  • [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [2]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [3]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon. Rev. 9 129

    [4]

    Mucke O D, Fang S B, Cirmi G, Maria Rossi G, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Eletron. Electron. 21 8700712

    [5]

    Fang S, Cirmi G, Chia S, Mucke O D, Kärtner F X, Manzoni C, Farinello P, Cerullo G 2013 Conference on Lasers and Electro-Optics Pacific Rim (OSA) Kyoto, Japan, June 30-July 4, 2013 pWB3_1

    [6]

    Schmid B E, Thire N, Boivin M, Laramee A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Legare F 2014 Nat. Commun. 5 3643

    [7]

    Krogen P, Suchowski H, Liang H, Flemens N, Hong K H, Kärtner F X, Moses J 2017 Nat. Photon. 11 222

    [8]

    Fang S, Tanigawa T, Ishikawa K L, Karasawa N, Yamashita M 2011 J. Opt. Soc. Am. B 28 1

    [9]

    Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X, Xu Z Z 2013 Phys. Rev. Lett. 110 233903

    [10]

    Takahashi E J, Lan P, Mucke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691

    [11]

    Jin C, Wang G, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003

    [12]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [13]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [14]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kärtner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [15]

    Fang S, Mainz R, Rossi G M, Yang Y, Cirmi G, Chia S, Manzoni C, Cerullo G, Mucke O D, Kartner F X 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference Munich, Germany, June 21-25, 2015 pCG_P_4

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Trebino R, DeLong K W, Fittinghoff D N, Sweetser J N, Krumbugel M A, Richman B A 1997 Rev. Sci. Instrum. 68 3277

    [18]

    Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829

    [19]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S, Xiao M 2017 Opt. Express 25 21115

    [20]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62

  • [1] SHI Zhuo, CHANG Hongxiang, WANG Dongliang, GUO Hongyu, DONG Zikai, DU Zhihang, LIANG Chengbin, LI Can, ZHOU Pu, WEI Zhiyi, CHANG Guoqing. High-power high-energy four-channel fiber coherent beam combined system. Acta Physica Sinica, 2025, 74(1): 014205. doi: 10.7498/aps.74.20241476
    [2] Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing. Recent progress of coherent combining technology in femtosecond fiber lasers. Acta Physica Sinica, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [3] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [4] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [5] Huang Pei,  Fang Shao-Bo,  Huang Hang-Dong,  Hou Xun,  Wei Zhi-Yi. Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator. Acta Physica Sinica, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [6] Zhou Ze-Min, Zeng Xin-Wu, Gong Chang-Chao, Zhao Yun, Tian Zhang-Fu. Experimental investigations on coherent combination of high-power and high-intensity air-modulated speakers. Acta Physica Sinica, 2013, 62(13): 134305. doi: 10.7498/aps.62.134305
    [7] Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica, 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [8] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique. Acta Physica Sinica, 2012, 61(3): 034204. doi: 10.7498/aps.61.034204
    [9] Su Rong-Tao, Zhou Pu, Wang Xiao-Lin, Ji Xiang, Xu Xiao-Jun. Influence of temporal error with different pulse shapes on coherent beam combination system. Acta Physica Sinica, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [10] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [11] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Influence and simulated correction of tip/tilt phase error on fiber laser coherent beam combination. Acta Physica Sinica, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [12] Zhang Hui, Lu Juan, Wen Jin-Hui, Lei Liang, Jiao Zhong-Xing, Lai Tian-Shu. Phase measurement of femtosecond pulses at different wavelengths. Acta Physica Sinica, 2011, 60(12): 124211. doi: 10.7498/aps.60.124211
    [13] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [16] Wen Jin-Hui, Liu Jun, Zhang Hui, Chen Jia-Long, Huang Zi-Zhu, Jiao Zhong-Xing, Lai Tian-Shu. Characterization of chirped pulses with modified-zero-additional-phase spectral phase interferometry for direct electric-field reconstruction. Acta Physica Sinica, 2010, 59(1): 370-375. doi: 10.7498/aps.59.370
    [17] Lei Liang, Wen Jin-Hui, Jiao Zhong-Xing, Lai Tian-Shu, Lin Wei-Zhu. The amplitude and phase measurements of femtosecond pulses using fringe-free SPIDER. Acta Physica Sinica, 2008, 57(1): 307-312. doi: 10.7498/aps.57.307
    [18] Wen Jin-Hui, Lei Liang, Jiao Zhong-Xing, Lai Tian-Shu, Lin Wei-Zhu. Comparison of accuracy between two spectral phase interferometric methods in the characterization of complex pulses. Acta Physica Sinica, 2006, 55(4): 1883-1888. doi: 10.7498/aps.55.1883
    [19] Lei Liang, Wen Jin-Hui, Jiao Zhong-Xing, Shou Qian, Wu Yu, Liu Lu-Ning, Lai Tian-Shu, Lin Wei-Zhu. Fringe-free spectral phase interferometry for direct electric-field reconstruction. Acta Physica Sinica, 2006, 55(1): 244-248. doi: 10.7498/aps.55.244
    [20] Chai Lu, He Tie-Ying, Yang Sheng-Jie, Wang Qing-Yue, Zhang Zhi-Gang. Optimization of the parameters for a SPIDER. Acta Physica Sinica, 2004, 53(1): 114-118. doi: 10.7498/aps.53.114
Metrics
  • Abstract views:  6243
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2018
  • Accepted Date:  31 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回