Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ionization time of He atom in the strong field tunnelling ionization mode

Wang Yan-Hai

Citation:

Ionization time of He atom in the strong field tunnelling ionization mode

Wang Yan-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The question of how long it takes for a particle to tunnel through a barrier, which was first put forward by MacColl (Phys. Rev. 40 621 (1932)), belongs to the fundamental process of quantum physics and has been the subject of intense debate since then. Many efforts have been devoted to addressing this question about how to define, explain and measure this tunneling time, but widespread controversies still exist in theories and experiments. Attosecond physics offers insights into ultrafast electron dynamics in atoms and moleculars on the attosecond (10-18 s) timescales, and therefore, ionization of atoms or moleculars in a strong laser filed allows for tackling this question in an experimentally and conceptually well-defined manner. The tunneling ionization dynamics of electrons plays an extremely important role in the field, since tunneling is the first crucial step in strong field ionizations of atoms and molecules and underlies virtually all present experiments in attosecond science. In the present paper, the tunneling ionization time of a single-active electron tunneling through a He atom subjected to a step static electric field, defined as a nonvanishing positive time delay between the instant of switch-on of the step static electric field and the one of ionization, is obtained from the numerical solution of the time-dependent Schrdinger equation in one dimension. The results show that the time delay between the instant of maximum probability current at the potential barrier exit and the one of switch-on of the step static electric field and the time delay needed by the ground wave function evolving to the continuum, which can be expressed as the transition element of the incident and transmitted parts of the wave function, are both very close to the Keldysh time explained as the time it takes for the bound electron having velocity = iIp/2 to cross the tunneling barrier. Compared with the definition of tunneling time delay in other literature, the one of the ground wave function evolution to the continuous state is much consistent with the actual ionization process. The reason why the electron tunneling time cannot be defined as the time delay between the maximum ionization rate and the instant of the laser peak field is that the wave function could penetrate the tunneling barrier earlier if a few-cycle optical field is adopted in experiment. According to the analysis in this article, an experimental method of measuring the actual electron tunneling ionization time using the optical field synthesis technique is proposed. The results of this paper will be helpful in tackling the problem of tunneling time in strong ionization.
      Corresponding author: Wang Yan-Hai, wangyanhai@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504081).
    [1]

    Maccoll L A 1932 Phys. Rev. 40 621

    [2]

    Keldysh L {1965 Sov. Phys. JETP 20 1307

    [3]

    Perelomov A, Popov V, Terent'ev M {1966 Sov. Phys. JETP 23 924

    [4]

    Bttiker M, Landauer R {1985 Phys. Scr. 49 711

    [5]

    Landauer R, Martin T 1994 Rev. Mod. Phys. 66 217

    [6]

    Yamada N 2004 Phys. Rev. Lett. 93 170401

    [7]

    Eckle P, Pfeiffer A, Cirelli C, Staudte A, Drner R, Muller H, Bttiker M, Keller U 2008 Science 322 1525

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2011 Nature Phys. 8 76

    [9]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N. 2012 Nature 485 343

    [10]

    Mcdonald C R, Orlando G, Vampa G, Brabec T 2013 Phys. Rev. Lett. 111 090405

    [11]

    Hassan M T, Luu T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [13]

    Corkum P B 2011 Phys. Today 64 36

    [14]

    Luo X Y, Liu H F, Ben S, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 刘海凤, 贲帅, 刘学深 2016 物理学报 65 123201]

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201]

    [16]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T 2010 Science 328 1658

    [17]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739

    [18]

    Gallmann L, Landsman A, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Keller U 2013 Conference on and International Quantum Electronics Conference San Jose, Califonia, United States, June 9-14, 2013 p1

    [19]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1

    [20]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901

    [21]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [22]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148

    [23]

    Zhang G T 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese) [张刚台 2011 博士学位论文 (吉林: 吉林大学)]

    [24]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [25]

    Teeny N, Yakaboylu E, Bauke H, Keitel C H 2016 Phys. Rev. Lett. 116 063003

    [26]

    Feynman R P, Hibbs A R (Translated by Zhang B G) 1986 Quantum Mechanics and Path Integrals (Beijing: Science Press) pp171-178 (in Chinese) [费曼, 希布斯 著 (张邦固 译) 1986 量子力学与路径积分 (北京: 科学出版社) 第171-178页]

    [27]

    Landsman A S, Keller U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204024

    [28]

    Yudin G L, Ivanov M Y {2001 Phys. Rev. A 64 289

    [29]

    Orlando G, Mcdonald C R, Protik N H, Vampa G, Brabec T {2014 J. Phys. B: At., Mol. Opt. Phys. 47 44

    [30]

    Pfeiffer A N, Cirelli C, Smolarski M, Keller U 2013 Chem. Phys. 414 84

    [31]

    Wirth A, Hassan M T, Grgura I, Gagnon J, Moulet A, Luu T, Pabst S, Santra R, Alahmed Z, Azzeer A 2011 Science 334 195

    [32]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

  • [1]

    Maccoll L A 1932 Phys. Rev. 40 621

    [2]

    Keldysh L {1965 Sov. Phys. JETP 20 1307

    [3]

    Perelomov A, Popov V, Terent'ev M {1966 Sov. Phys. JETP 23 924

    [4]

    Bttiker M, Landauer R {1985 Phys. Scr. 49 711

    [5]

    Landauer R, Martin T 1994 Rev. Mod. Phys. 66 217

    [6]

    Yamada N 2004 Phys. Rev. Lett. 93 170401

    [7]

    Eckle P, Pfeiffer A, Cirelli C, Staudte A, Drner R, Muller H, Bttiker M, Keller U 2008 Science 322 1525

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2011 Nature Phys. 8 76

    [9]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N. 2012 Nature 485 343

    [10]

    Mcdonald C R, Orlando G, Vampa G, Brabec T 2013 Phys. Rev. Lett. 111 090405

    [11]

    Hassan M T, Luu T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [13]

    Corkum P B 2011 Phys. Today 64 36

    [14]

    Luo X Y, Liu H F, Ben S, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 刘海凤, 贲帅, 刘学深 2016 物理学报 65 123201]

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201]

    [16]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T 2010 Science 328 1658

    [17]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F 2010 Nature 466 739

    [18]

    Gallmann L, Landsman A, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Keller U 2013 Conference on and International Quantum Electronics Conference San Jose, Califonia, United States, June 9-14, 2013 p1

    [19]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1

    [20]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901

    [21]

    Su Q, Eberly J H 1991 Phys. Rev. A 44 5997

    [22]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148

    [23]

    Zhang G T 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese) [张刚台 2011 博士学位论文 (吉林: 吉林大学)]

    [24]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [25]

    Teeny N, Yakaboylu E, Bauke H, Keitel C H 2016 Phys. Rev. Lett. 116 063003

    [26]

    Feynman R P, Hibbs A R (Translated by Zhang B G) 1986 Quantum Mechanics and Path Integrals (Beijing: Science Press) pp171-178 (in Chinese) [费曼, 希布斯 著 (张邦固 译) 1986 量子力学与路径积分 (北京: 科学出版社) 第171-178页]

    [27]

    Landsman A S, Keller U 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204024

    [28]

    Yudin G L, Ivanov M Y {2001 Phys. Rev. A 64 289

    [29]

    Orlando G, Mcdonald C R, Protik N H, Vampa G, Brabec T {2014 J. Phys. B: At., Mol. Opt. Phys. 47 44

    [30]

    Pfeiffer A N, Cirelli C, Smolarski M, Keller U 2013 Chem. Phys. 414 84

    [31]

    Wirth A, Hassan M T, Grgura I, Gagnon J, Moulet A, Luu T, Pabst S, Santra R, Alahmed Z, Azzeer A 2011 Science 334 195

    [32]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

  • [1] Li Chun-Lei, Zheng Jun, Wang Xiao-Ming, Xu Yan. Spin-polarized transport properties in diluted-magnetic-semiconductor/semiconductor superlattices under light-field assisted. Acta Physica Sinica, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [2] Che Jia-Yin, Chen Chao, Li Wei-Yan, Li Wei, Chen Yan-Jun. Advances in response time of strong-field ionization of atoms. Acta Physica Sinica, 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [3] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [4] Zhao Meng, Quan Wei, Xiao Zhi-Lei, Xu Song-Po, Wang Zhi-Qiang, Wang Ming-Hui, Cheng Si-Jin, Wu Wen-Zhuo, Wang Yan-Lan, Lai Xuan-Yang, Liu Xiao-Jun. Tunneling delay time in strong field ionization of atomic Ar. Acta Physica Sinica, 2022, 71(23): 233203. doi: 10.7498/aps.71.20221295
    [5] Li Ting, Wang Tao, Wang Ye-Bing, Lu Ben-Quan, Lu Xiao-Tong, Yin Mo-Juan, Chang Hong. Experimental observation of quantum tunneling in shallow optical lattice. Acta Physica Sinica, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [6] Shen Xing-Chen, Liu Yang, Chen Qi, Lü Hang, Xu Hai-Feng. Rydberg state excitation of atoms and molecules in ultrafast intense laser field. Acta Physica Sinica, 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [7] Tao Jian-Fei, Xia Qin-Zhi, Liao Lin-Gu, Liu Jie, Liu Xiao-Jing. Theory and application of photoelectron trajectory interference holography for atomic ionization in intense laser field. Acta Physica Sinica, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [8] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [9] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [10] Guo Li, Han Shen-Sheng, Chen Jing. Study of above-threshold ionization by Wigner-distribution-like function method. Acta Physica Sinica, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [11] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [12] Li Ming, Chen Jun, Gong Jian. Dwell time and escape tunneling in InAs/InP cylindrical quantum wire. Acta Physica Sinica, 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [13] Zhang Ke-Zhi, Wang Jian-Jun, Liu Guo-Rong, Xue Ju-Kui. Tunneling dynamics and periodic modulating of a two-component BECs in optical lattices. Acta Physica Sinica, 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [14] Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Lin Tie, Guo Shao-Ling, Chu Jun-Hao, Dai Ning. Magneto-tunneling effect in weakly coupled GaAs/AlGaAs/InGaAs double quantum well tunneling structure. Acta Physica Sinica, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [15] Lin Kai, Yang Shu-Zheng. Fermions tunneling of the Vaidya-Bonner black hole. Acta Physica Sinica, 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [16] Jiang Qing-Quan, Wu Shuang-Qing. New form of the Kerr solution and its tunneling radiation. Acta Physica Sinica, 2006, 55(9): 4428-4432. doi: 10.7498/aps.55.4428
    [17] Zhang Jing-Yi, Zhao Zheng. Massive particles’ Hawking radiation via tunneling. Acta Physica Sinica, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [18] Chen Wei-Bing, Xu Jing-Ping, Zou Xiao, Li Yan-Ping, Xu Sheng-Guo, Hu Zhi-Fu. Analytic tunneling-current model of small-scale MOSFETs. Acta Physica Sinica, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [19] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [20] WANG YONG-SHENG, ZHANG GUANG-YAN, XIONG GUANG-NAN, XU SHU-PEI. A MODEL OF MULTIPLE TUNNEL LEVELS OF PHOTOSTI- MULATED LUMINESCENCE IN BaFCl:Eu~(2+)PHOSPHORS. Acta Physica Sinica, 1995, 44(12): 2007-2012. doi: 10.7498/aps.44.2007
Metrics
  • Abstract views:  6628
  • PDF Downloads:  438
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2016
  • Accepted Date:  27 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回