Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-body fragmentation dynamics of C3H4 induced by 50-keV/u Ne8+ ion impact

Li Tao-Tao Yuan Hang Wang Xing Zhang Zhen Guo Da-Long Zhu Xiao-Long Yan Shun-Cheng Zhao Dong-Mei Zhang Shao-Feng Xu Shen-Yue Ma Xin-Wen

Citation:

Three-body fragmentation dynamics of C3H4 induced by 50-keV/u Ne8+ ion impact

Li Tao-Tao, Yuan Hang, Wang Xing, Zhang Zhen, Guo Da-Long, Zhu Xiao-Long, Yan Shun-Cheng, Zhao Dong-Mei, Zhang Shao-Feng, Xu Shen-Yue, Ma Xin-Wen
PDF
HTML
Get Citation
  • The experiment on collision between 50-keV/u Ne8+ ion and C3H4 molecule is carried out by reaction microscopic imaging spectrometer. The process of forming the $\rm C_3H_4^{2+}$ divalent ion from propylene (CH2CCH2) and proacetylene (CH3CCH) and then dissociating to produce H+ and C3H2+ $\rm C_3H_2^+$ ions and H atom is studied. Using the reaction microscope, the momentum vector of H+ ion and the momentum vector of $\rm C_3H_2^+$ ion are directly obtained, and then the momentum of the undetected fragment is reconstructed according to momentum conservation. By analyzing the kinetic energy of the three fragments and the total kinetic energy released from the dissociation process, the events with H atom as the third fragment are discriminated from H+, and thus the H+ ion, $ \rm C_3H_2^+ $ ion, and H atom are identified. In addition, it is found that the sequential fragmentation pathway in which H+ ion and $\rm C_3H_3^+$ ion are produced in the first step followed by dissociation of $ \rm C_3H_3^+ $ into $ \rm C_3H_2^+ $ ion and H atom in the second step is the dominant dissociation mechanism according to the detailed analyses of the Dalitz plot, Newton diagram and α distribution.
      Corresponding author: Xu Shen-Yue, s.xu@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Nature Science Foundation of China (Grant No. 11674332).
    [1]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (Boston: Springer) p3

    [2]

    Sada P V, Bjoraker G L, Jennings D E, McCabe G H, Romani P N 1998 Icarus 136 192Google Scholar

    [3]

    Xu S Y, Zhu X L, Feng W T, Guo D L, Zhao Q S, Yan S C, Zhang P J, Zhao D M, Gao Y, Zhang S F, Yang J, Ma X 2018 Phys. Rev. A 97 062701Google Scholar

    [4]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [5]

    Hsieh S, Eland J H D 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4515Google Scholar

    [6]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [7]

    Yan S C, Zhu X L, Zhang P J, Ma X, Feng W T, Gao Y, Xu S Y, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [8]

    Yang H, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [9]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308Google Scholar

    [10]

    Gong X C, Kunitski M, Ph H Schmidt L, Jahnke T, Czasch A, Dörner R, Wu J 2013 Phys. Rev. A 88 013422Google Scholar

    [11]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M, Naumov A, Villeneuve D, McKellar A, Corkum P, Staudte A 2013 Phys. Rev. Lett. 118 153001Google Scholar

    [12]

    Tielens A 2013 Rev. Mod. Phys. 85 1021Google Scholar

    [13]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [14]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [15]

    Wang X C, Zhang Y, Lu D, Lu G C, Wei B R, Zhang B H, Tang Y J, Hutton R, Zou Y M 2014 Phys. Rev. A 90 062705Google Scholar

    [16]

    Kusakabe T, Satoh S, Tawara H, Kimura M 2001 Phys. Rev. Lett. 87 328Google Scholar

    [17]

    Scully S, Senthil V, Wyer J, Shah M, Montenegro E, Kimura M, Tawara H 2005 Phys. Rev. A 72 030701Google Scholar

    [18]

    Mebel A M, Bandrauk A D 2008 J. Chem. Phys. 129 224311Google Scholar

    [19]

    Psciuk B T, Tao P, Schlegel H B 2010 J. Phys. Chem. A 114 7653Google Scholar

    [20]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. Chem. Phys. Lett. 469 255Google Scholar

    [21]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. 131 1659 151102Google Scholar

    [22]

    Xu H L, Okino T, Yamanouchi K 2011 Appl. Phys. A 104 941Google Scholar

    [23]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 4230Google Scholar

    [24]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 10640Google Scholar

    [25]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [26]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Yuan H, Xu S Y, Li T T, Liu Y, Qian D B, Guo D L, Zhu X L, Ma X W 2020 Phys. Rev. A 102 062808Google Scholar

    [28]

    Li Y T, Xu S Y, Guo D L, Jia S K, Jiang X J, Zhu X L, Ma X W 2019 J. Chem. Phys. 150 144311Google Scholar

  • 图 1  (a) CH2CCH2和(b) CH3CCH 二维飞行时间谱[8], 其中红色椭圆对应H+ + ${{\text{C}}_3}{\text{H}}_2^ + $的事件; (c) CH2CCH2和 (d) CH3CCH分子的KER-H+能量的二维符合谱; (e) CH2CCH2和 (f) CH3CCH三体碎裂${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H通道的KER分布; (g) CH2CCH2和(h) CH3CCH对应的H+和未探测粒子动能(H+/H0)的二维符合谱

    Figure 1.  Two-dimensional time-of-flight (TOF) spectra, in which the events of red oval corresponds to the H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ for (a) CH2CCH2 and (b) CH3CCH; two-dimensional coincidence correlation spectra of KER-H+ energy of (c) CH2CCH2 and (d) CH3CCH; the KER distribution of (e) CH2CCH2 and (f) CH3CCH for three-body fragmentation of ${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H channel; two-dimensional coincidence spectra of kinetic energies between H+ and undetected particle (H+/H0) of (g) CH2CCH2 and (h) CH3CCH.

    图 2  (a) CH2CCH2 和 (b) CH3CCH三体解离${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H过程的Dalitz 图

    Figure 2.  Dalitz plot for three-body dissociation channel ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H of (a) CH2CCH2 and (b) CH3CCH.

    图 3  CH2CCH2 (a)—(f) 和 CH3CCH (g)—(l)三体解离${{\text{C}}_3}{\text{H}}_4^{2 + }$ → H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H过程的Newton图 (a)和(g) 包含所有事件, 其他为以第3个粒子H的能量为选择条件的Newton图, 相应能量分别为0—0.5 eV (b), (h); 0.5—1.0 eV (c), (i); 1.0—2.0 eV (d), (j); 2.0—4.0 eV (e), (k); 4.0—6.0 eV (f), (l)

    Figure 3.  Newton diagrams of CH2CCH2 (a)−(f) and CH3CCH (g)−(l) for three-body fragmentation channel ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H+ + ${{\text{C}}_3}{\text{H}}_2^ + $ + H. (a) and (g) are Newton diagrams for all the events. The others are for different energy ranges of the neutral H: 0−0.5 eV for (b), (h), 0.5−1.0 eV for (c), (i); 1.0−2.0 eV for (d), (j); 2.0−4.0 eV for (e), (k); 4.0−6.0 eV for (f), (l).

    图 4  (a) CH2CCH2 和 (b) CH3CCH 分子次序解离路径${{\text{C}}_3}{\text{H}}_4^{2 + }$→H++${{\text{C}}_3}{\text{H}}_3^ + $→H++${{\text{C}}_3}{\text{H}}_2^ + $+H中两步解离过程之间夹角α分布; (c), (d) 不同H 碎片能量条件(0—0.5 eV, 0.5—1.0 eV, 1.0—2.0 eV, 2.0—4.0 eV, 4.0—6.0 eV) 下α分布. 图中蓝色曲线为标准的正弦分布曲线, 所有曲线都在最大值处作归一化处理

    Figure 4.  Intensity distribution of the angle α between the first dissociation and second step for sequential dissociation ${{\text{C}}_3}{\text{H}}_4^{2 + }$→H++${{\text{C}}_3}{\text{H}}_3^ + $→H++${{\text{C}}_3}{\text{H}}_2^ + $+H of (a) CH2CCH2 and (b) CH3CCH; (c), (d) the intensity distributions of the angle α for different energy region of H (0−0.5 eV, 0.5−1.0 eV, 1.0−2.0 eV, 2.0−4.0 eV, 4.0−6.0 eV). The blue lines are the standard sinusoidal distribution curves. All curves are normalized at the maximum value.

  • [1]

    Janev R K 1995 Atomic and Molecular Processes in Fusion Edge Plasmas (Boston: Springer) p3

    [2]

    Sada P V, Bjoraker G L, Jennings D E, McCabe G H, Romani P N 1998 Icarus 136 192Google Scholar

    [3]

    Xu S Y, Zhu X L, Feng W T, Guo D L, Zhao Q S, Yan S C, Zhang P J, Zhao D M, Gao Y, Zhang S F, Yang J, Ma X 2018 Phys. Rev. A 97 062701Google Scholar

    [4]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [5]

    Hsieh S, Eland J H D 1997 J. Phys. B: At. Mol. Opt. Phys. 30 4515Google Scholar

    [6]

    Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar

    [7]

    Yan S C, Zhu X L, Zhang P J, Ma X, Feng W T, Gao Y, Xu S Y, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [8]

    Yang H, Wang E L, Dong W X, Gong M M, Shen Z J, Tang Y G, Shan X, Chen X J 2018 Phys. Rev. A 97 052703Google Scholar

    [9]

    Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308Google Scholar

    [10]

    Gong X C, Kunitski M, Ph H Schmidt L, Jahnke T, Czasch A, Dörner R, Wu J 2013 Phys. Rev. A 88 013422Google Scholar

    [11]

    Ding X Y, Haertelt M, Schlauderer S, Schuurman M, Naumov A, Villeneuve D, McKellar A, Corkum P, Staudte A 2013 Phys. Rev. Lett. 118 153001Google Scholar

    [12]

    Tielens A 2013 Rev. Mod. Phys. 85 1021Google Scholar

    [13]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [14]

    Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar

    [15]

    Wang X C, Zhang Y, Lu D, Lu G C, Wei B R, Zhang B H, Tang Y J, Hutton R, Zou Y M 2014 Phys. Rev. A 90 062705Google Scholar

    [16]

    Kusakabe T, Satoh S, Tawara H, Kimura M 2001 Phys. Rev. Lett. 87 328Google Scholar

    [17]

    Scully S, Senthil V, Wyer J, Shah M, Montenegro E, Kimura M, Tawara H 2005 Phys. Rev. A 72 030701Google Scholar

    [18]

    Mebel A M, Bandrauk A D 2008 J. Chem. Phys. 129 224311Google Scholar

    [19]

    Psciuk B T, Tao P, Schlegel H B 2010 J. Phys. Chem. A 114 7653Google Scholar

    [20]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. Chem. Phys. Lett. 469 255Google Scholar

    [21]

    Xu H L, Okino T, Yamanouchi K 2009 J. Chem. Phys. 131 1659 151102Google Scholar

    [22]

    Xu H L, Okino T, Yamanouchi K 2011 Appl. Phys. A 104 941Google Scholar

    [23]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 4230Google Scholar

    [24]

    Okino T, Watanabe A, Xu H L, Yamanouchi K 2012 Phys. Chem. Chem. Phys. 14 10640Google Scholar

    [25]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [26]

    Ma X W, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [27]

    Yuan H, Xu S Y, Li T T, Liu Y, Qian D B, Guo D L, Zhu X L, Ma X W 2020 Phys. Rev. A 102 062808Google Scholar

    [28]

    Li Y T, Xu S Y, Guo D L, Jia S K, Jiang X J, Zhu X L, Ma X W 2019 J. Chem. Phys. 150 144311Google Scholar

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in 1.4-20 keV/u Ar8+ collision with He. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [3] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [4] Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie. Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma. Acta Physica Sinica, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [5] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [6] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [9] Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun. Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion. Acta Physica Sinica, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [10] Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei. Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact. Acta Physica Sinica, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [11] Huang Yan-Ru, Ren Huan, Song Jian. Investigation of the isomerism of dichloroethylene in momentum space. Acta Physica Sinica, 2015, 64(6): 063401. doi: 10.7498/aps.64.063401
    [12] Yang Zhao-Rui, Zhang Xiao-An, Xu Qiu-Mei, Yang Zhi-Hu. Visible light emission produced by interaction of highly ionized Krq+ ions with a Al surface. Acta Physica Sinica, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [13] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [14] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [15] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [17] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [18] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [20] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
Metrics
  • Abstract views:  3614
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2021
  • Accepted Date:  21 January 2022
  • Available Online:  02 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回