Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation

Shao Zi-Qiao Bi Heng-Chang Xie Xiao Wan Neng Sun Li-Tao

Citation:

Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation

Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dye pollution,one of the most serious problems in water pollution,has attracted the attention of scientists.There are many methods,such as chemical oxidation,physical adsorption,biodegradation,photocatalysis,etc.,that have been adopted to handle the crisis of dye polultion. Compared with other strategies,photocatalysis has its unique advantages including low energy consumption,environment amicableness and high efficiency.Tungsten trioxide (WO3),a semiconductor with a band gap of 2.8 eV,has unique physical and chemical properties,and it has been applied to the area of photocatalysis to solve the problem of water pollution in recent years.However,the photocatalytic efficiency of bulk tungsten oxide fails to reach the expected.In this paper,a one-dimensional complex of tungstun trioxide and silver oxide (WO3/Ag2O) is synthesized via a simple hydrothermal method for photocatalytic degradation of methylene blue.The crystal structure,morphology and photocatalytic degradation ability towards methylene blue are characterized and analyzed via X-ray diffraction,scanning electron microscopy,transmission electron microscope,X-ray photoelectron spectroscopy,and UV-Vis spectrophotometer.Silver oxide (Ag2O),with a band gap of 1.2 eV,is found to be sensitive to visible light.The combination of tungsten trioxide and silver oxide promotes its photocatalytic efficiency dramatically under visible light illumination. Results show that WO3 nanorods in the composite possess a one-dimensional,hexagonal structure with an average length of 4μm and a diameter of 200 nm.The Ag2O attached to WO3 nanorods forms hexagonal nanoparticles and their average diameter reaches 20 nm.It is observed that WO3/Ag2O composite displays a loose structure and a high specific surface area,which provides more reactive sites.Comparing with single component,UV-Vis spectrophotometry shows that the composite has a highabsorbance in the range of visible light.The combination of tungsten trioxide and silver oxide can change the band gap of the photocatalyst whereas the photocatalytic efficiency of the composite reaches 98% in 60 min under visible light.Therefore,the synergistic effect of WO3 and Ag2O plays a vital role in enhancing the photocatalytic performance.Moreover,the stability of photocatalyst is one of the most important indicators of its recycling and long-term effectiveness,and the present WO3/Ag2O composite has good catalytic and chemical stability.This investigation proves that the combination of wide bandgap photocatalysts with visible-light sensitive metal oxide with large specific area will improve photocatalytic activity efficiently under visible light.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 11525415), the National Key R&D Program of China (Grant No. 2016YFA0501602), the National Natural Science Foundation of China (Grant No. 11674053), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51420105003), and the China Postdoctoral Science Foundation (Grant No. 2017M611653).
    [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Zhou Q 2001 Bull. Environ. Contam. Toxicol. 66 784

    [3]

    Reddy S S, Kotaiah B, Reddy N S P 2008 Bull. Chem. Soc. Ethiopia 22 146

    [4]

    Cao H Y, Bi H C, Xie X, Su S, Sun L T 2016 Acta Phys. Sin. 65 146802 (in Chinese) [曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛 2016 物理学报 65 146802]

    [5]

    Sirés I, Brillas E 2012 Environ. Int. 40 212

    [6]

    Camargo J A 1994 Environ. Int. 20 229

    [7]

    Jiang R, Zhu H Y, Li X D, Xiao L 2009 Chem. Eng. J. 152 537

    [8]

    Wang W, Zhu W, Xu H 2008 J. Phys. Chem. C 112 16754

    [9]

    Jang J S, Kim H G, Lee J S 2012 Catal. Today 185 270

    [10]

    Chen X, Burda C 2008 J Am. Chem. Soc. 130 5018

    [11]

    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M 2004 Water Sci. Technol. 49 159

    [12]

    Arabatzis I M, Stergiopoulos T, Bernard M C, Labou D, Neophytides S G, Falaras P 2003 Appl. Catal. B: Environ. 42 187

    [13]

    Ishibai Y, Sato J, Nishikawa T, Miyagishi S 2008 Appl. Catal. B: Environ. 79 117

    [14]

    Li G, Zhang D Q, Yu J C 2008 Chem. Mater. 20 3983

    [15]

    Yang J, An S, Park W, Yi G, Choi W 2004 Adv. Mater. 16 1661

    [16]

    Bera R, Kundu S, Patra A 2015 ACS Appl. Mater. Interfaces 7 13251

    [17]

    Zhu T, Chong M N, Chan E S 2015 ChemSuschem 7 2974

    [18]

    Chen G S, Chen J H, Kuo J, Chen Y W, Niu H 2013 Mater. Lett. 109 217

    [19]

    Ohashi T, Sugimoto T, Sako K, Hayakawa S, Katagiri K, Inumaru K 2015 Catal. Sci. Technol. 5 1163

    [20]

    Li X L, Liu J F, Li Y D 2003 Inorg. Chem. 42 921

    [21]

    Yu J, Yu H, Guo H, Li M, Mann S 2008 Small 4 87

    [22]

    Xi G, Yue B, Cao J, Ye J H 2011 Chem. Eur. J. 17 5145

    [23]

    Xi G, Ouyang S, Li P, Ye J H, Ma Q, Su N, Bai H, Wang C 2012 Angew. Chem. Int. Ed. 51 2395

    [24]

    Gao X Q, Yang C, Xiao F, Zhu Y, Wang J D, Su X T 2012 Mater. Lett. 84 151

    [25]

    Kim H, Kim H, Weon S, Moon G, Kim J H, Choi W 2016 ACS Catalysis 6 8350

    [26]

    Robert D 2007 Catal. Today 122 20

    [27]

    Sheng H, Ji H W, Ma W, Chen C, Zhao J 2013 Angew. Chem. Int. Ed. 52 9686

    [28]

    Strukul G 1992 Catalytic Oxidations with Hydrogen Peroxide as Oxidant(Vol. 9) (Dordrecht: Kluwer Academic Publishers) p101

    [29]

    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K 2007 J. Phys. Chem. C 111 7574

    [30]

    Irie H, Miura S, Kamiya K, Hashimoto K 2008 Chem. Phys. Lett. 457 202

    [31]

    Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K 2008 Chem. Commun. 43 5565

    [32]

    Abe R, Takami H, Murakami N, Ohtani B 2008 J. Am. Chem. Soc. 130 7780

    [33]

    Xiang Q, Meng G F, Zhao H B, Zhang Y, Li H, Ma W J, Xu J Q 2010 J. Phys. Chem. C 114 2049

    [34]

    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K 2008 Catal. Commun. 9 1254

    [35]

    Tang Y, Wee P, Lai Y, Wang X, Gong D, Kanhere P D 2012 J. Phys. Chem. C 116 2772

    [36]

    Zhou W J, Liu H, Wang J Y, Liu D, Du G, Cui J 2010 ACS Appl. Mater. Interfaces 2 2385

    [37]

    Sarkar D, Ghosh C K, Mukherjee S, Chattopadhyay K K 2013 ACS Appl. Mater. Interfaces 5 331

    [38]

    Chen F T, Liu Z, Liu Y, Fang P, Dai Y 2013 Chem. Eng. J. 221 283

    [39]

    Fang F, Li Q, Shang J K 2011 Surf. Coat. Technol. 205 2919

    [40]

    Miao X, Lei H, Dong S J 2013 ACS Appl. Mater. Interfaces 5 12533

    [41]

    Huang Z F, Song J J, Pan L, Zhang X W, Wang L, Zou J J 2015 Adv. Mater. 27 5309

    [42]

    Li Y J, Xue Y J, Tian J, Song X J 2017 Sol. Energy Mater. Sol. Cells 168 100

    [43]

    Lu Y Y, Liu G, Zhang J, Feng Z C, Li C, Li Z 2016 Chin. J. Catal. 37 349

    [44]

    Reiss P, Protière M, Li L 2009 Small 5 154

  • [1]

    Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097

    [2]

    Zhou Q 2001 Bull. Environ. Contam. Toxicol. 66 784

    [3]

    Reddy S S, Kotaiah B, Reddy N S P 2008 Bull. Chem. Soc. Ethiopia 22 146

    [4]

    Cao H Y, Bi H C, Xie X, Su S, Sun L T 2016 Acta Phys. Sin. 65 146802 (in Chinese) [曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛 2016 物理学报 65 146802]

    [5]

    Sirés I, Brillas E 2012 Environ. Int. 40 212

    [6]

    Camargo J A 1994 Environ. Int. 20 229

    [7]

    Jiang R, Zhu H Y, Li X D, Xiao L 2009 Chem. Eng. J. 152 537

    [8]

    Wang W, Zhu W, Xu H 2008 J. Phys. Chem. C 112 16754

    [9]

    Jang J S, Kim H G, Lee J S 2012 Catal. Today 185 270

    [10]

    Chen X, Burda C 2008 J Am. Chem. Soc. 130 5018

    [11]

    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M 2004 Water Sci. Technol. 49 159

    [12]

    Arabatzis I M, Stergiopoulos T, Bernard M C, Labou D, Neophytides S G, Falaras P 2003 Appl. Catal. B: Environ. 42 187

    [13]

    Ishibai Y, Sato J, Nishikawa T, Miyagishi S 2008 Appl. Catal. B: Environ. 79 117

    [14]

    Li G, Zhang D Q, Yu J C 2008 Chem. Mater. 20 3983

    [15]

    Yang J, An S, Park W, Yi G, Choi W 2004 Adv. Mater. 16 1661

    [16]

    Bera R, Kundu S, Patra A 2015 ACS Appl. Mater. Interfaces 7 13251

    [17]

    Zhu T, Chong M N, Chan E S 2015 ChemSuschem 7 2974

    [18]

    Chen G S, Chen J H, Kuo J, Chen Y W, Niu H 2013 Mater. Lett. 109 217

    [19]

    Ohashi T, Sugimoto T, Sako K, Hayakawa S, Katagiri K, Inumaru K 2015 Catal. Sci. Technol. 5 1163

    [20]

    Li X L, Liu J F, Li Y D 2003 Inorg. Chem. 42 921

    [21]

    Yu J, Yu H, Guo H, Li M, Mann S 2008 Small 4 87

    [22]

    Xi G, Yue B, Cao J, Ye J H 2011 Chem. Eur. J. 17 5145

    [23]

    Xi G, Ouyang S, Li P, Ye J H, Ma Q, Su N, Bai H, Wang C 2012 Angew. Chem. Int. Ed. 51 2395

    [24]

    Gao X Q, Yang C, Xiao F, Zhu Y, Wang J D, Su X T 2012 Mater. Lett. 84 151

    [25]

    Kim H, Kim H, Weon S, Moon G, Kim J H, Choi W 2016 ACS Catalysis 6 8350

    [26]

    Robert D 2007 Catal. Today 122 20

    [27]

    Sheng H, Ji H W, Ma W, Chen C, Zhao J 2013 Angew. Chem. Int. Ed. 52 9686

    [28]

    Strukul G 1992 Catalytic Oxidations with Hydrogen Peroxide as Oxidant(Vol. 9) (Dordrecht: Kluwer Academic Publishers) p101

    [29]

    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K 2007 J. Phys. Chem. C 111 7574

    [30]

    Irie H, Miura S, Kamiya K, Hashimoto K 2008 Chem. Phys. Lett. 457 202

    [31]

    Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K 2008 Chem. Commun. 43 5565

    [32]

    Abe R, Takami H, Murakami N, Ohtani B 2008 J. Am. Chem. Soc. 130 7780

    [33]

    Xiang Q, Meng G F, Zhao H B, Zhang Y, Li H, Ma W J, Xu J Q 2010 J. Phys. Chem. C 114 2049

    [34]

    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K 2008 Catal. Commun. 9 1254

    [35]

    Tang Y, Wee P, Lai Y, Wang X, Gong D, Kanhere P D 2012 J. Phys. Chem. C 116 2772

    [36]

    Zhou W J, Liu H, Wang J Y, Liu D, Du G, Cui J 2010 ACS Appl. Mater. Interfaces 2 2385

    [37]

    Sarkar D, Ghosh C K, Mukherjee S, Chattopadhyay K K 2013 ACS Appl. Mater. Interfaces 5 331

    [38]

    Chen F T, Liu Z, Liu Y, Fang P, Dai Y 2013 Chem. Eng. J. 221 283

    [39]

    Fang F, Li Q, Shang J K 2011 Surf. Coat. Technol. 205 2919

    [40]

    Miao X, Lei H, Dong S J 2013 ACS Appl. Mater. Interfaces 5 12533

    [41]

    Huang Z F, Song J J, Pan L, Zhang X W, Wang L, Zou J J 2015 Adv. Mater. 27 5309

    [42]

    Li Y J, Xue Y J, Tian J, Song X J 2017 Sol. Energy Mater. Sol. Cells 168 100

    [43]

    Lu Y Y, Liu G, Zhang J, Feng Z C, Li C, Li Z 2016 Chin. J. Catal. 37 349

    [44]

    Reiss P, Protière M, Li L 2009 Small 5 154

  • [1] Xiao Wen-Yue, Dong Xiao-Shuo, Mamatrishat Mamat, Niu Na-Na, Li Guo-Dong, Zhu Ze-Tao, Bi Jie-Hao. Effects of different compositional ratios on physical structure and optical properties of thin films during alloying of Zn2+ and TiO2. Acta Physica Sinica, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang. Growth behavior of WO3 crystal topological structure and its electrochromic properties. Acta Physica Sinica, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [3] Wan Xin-Yang, Zhang Ye-Hui, Lu Shuai-Hua, Wu Yi-Lei, Zhou Qiong-Hua, Wang Jin-Lan. Machine learning accelerated search for new double perovskite oxide photocatalysis. Acta Physica Sinica, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [4] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [6] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [7] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [8] Zhao Bo-Shuo, Qiang Xiao-Yong, Qin Yue, Hu Ming. Tungsten oxide nanowire gas sensor preparation and P-type NO2 sensing properties at room temperature. Acta Physica Sinica, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [9] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [10] Guo Zhao-Long, Zhao Hai-Xin, Zhao Wei. Preparation and characterization of self-cleaning and anti-reflection ZnO-SiO2 nanometric films. Acta Physica Sinica, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [11] Fang Cheng, Wang Hong, Shi Si-Qi. Research progress of electrochromic performances of WO3. Acta Physica Sinica, 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [12] Li Pei-Xin, Feng Ming-Yang, Wu Cai-Ping, Li Shao-Bo, Hou Lei-Tian, Ma Jia-Sai, Yin Chun-Hao. Study on the photocatalytic mechanism of tio2 sensitized by zinc porphyrin. Acta Physica Sinica, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [13] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [14] Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin. P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature. Acta Physica Sinica, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [15] Zhao Juan, Hu Hui-Fang, Zeng Ya-Ping, Cheng Cai-Ping. Preparation of flower-like CuS hierarchical nanostructures and its visible light photocatalytic performance. Acta Physica Sinica, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [16] Chen Zhao, Ding Hong-Rui, Chen Wei-Hua, Li Yan, Zhang Guo-Yi, Lu An-Huai, Hu Xiao-Dong. Photoelectric catalytic properties of silicon solar cell used in microbial fuel cell system. Acta Physica Sinica, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [17] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [18] Chen Ying-Tian, T. H. Ho. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [19] Ma Hai-Min, Hong Liang, Yin Yi, Xu Jian, Ye Hui. Preparation and property of super-hydrophilic SiO2-TiO2 nano-particle layer. Acta Physica Sinica, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [20] Zhang Ai-Ping, Zhang Jin-Zhi. Hydrothermal synthesis of BiVO4 powder with different morphologies and structures. Acta Physica Sinica, 2009, 58(4): 2336-2344. doi: 10.7498/aps.58.2336
Metrics
  • Abstract views:  11065
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2018
  • Accepted Date:  19 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回