Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Disintegration, functionalization and drug-delivery application of nanodiamond

Qin Shi-Rong Zhao Qi Cheng Zhen-Guo Su Li-Xia Shan Chong-Xin

Citation:

Disintegration, functionalization and drug-delivery application of nanodiamond

Qin Shi-Rong, Zhao Qi, Cheng Zhen-Guo, Su Li-Xia, Shan Chong-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, with the rapid development of nanomedicine, the nanomaterials for bio-medical applications have received much attention. Although there are a variety of nanomaterials such as lipid, carbon nanotube, etc. that have been studied as drug carrier, they are restricted by the potential toxicity and high cost of production. So, it is necessary to find a good alternative for the future drug delivery applications. Detonation nanodiamond, as an important carbon nanomaterial, possesses many excellent properties such as facile functionalization, large specific surface area, low toxicity and high chemical stability and so on, which make them advantageous in bio-medical applications over many other nanomaterials. In this work, the carboxyl functionalized and well-dispersed nanodiamond (ND-COOH) is obtained through disintegration and chemical modification, and then the functionalized nanodiamond is characterized by transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, etc. to analyze its morphology and structure and the toxicity. Besides, the drug loading and release properties are also examined. The ND-COOH exhibits high zeta potential in aqueous solution, which enables them adsorb doxorubicin (dox) molecules onto the surface through electrostatic interaction, and the maximal loading reaches to 325 μg/mg, which is higher than most of reported results. It is because the bond between dox and ND-COOH origins from the electrostatic attraction between negatively charged-COO- on the ND and positively charged–NH3 in the dox. So, when the drug compounds are dispersed into low pH environment, the high H+ concentration would promote the transformation of –COO- into –COOH, which would weaken the electrostatic attraction between ND and dox and hence accelerate the drug release. This leads a drug release to reach 85% in pH 5.0 PBS and less than 40% in pH 7.4 PBS, exhibiting interesting pH-responsive drug release behavior. Finally, the toxicity and in vitro cancer cell killing results of ND-COOH and ND-dox preliminarily show that in the concentration range from 0 to 150 μg/mL, the functionalized ND-COOH does not inhibit the viability of SGC-7901 cells, exhibiting low toxicity. In contrast, the ND-dox shows obvious cytotoxicity towards SGC-7901 cells by strongly inhibiting their viability to lower than 40% in 150 μg/mL group. This work details and systematically discusses the disintegration, functionalization, drug loading and release properties of ND, which would be significant in promoting the biomedical application of ND.
      Corresponding author: Zhao Qi, zhaoqiv@126.com;cxshan@zzu.edu.cn ; Shan Chong-Xin, zhaoqiv@126.com;cxshan@zzu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21601159) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 61425021).
    [1]

    Etheridge M L, Campbell S A, Erdman A G, Haynes C L, Wolf S M, Mccullough J 2013 Nanomed. Nanotechnol. 9 1

    [2]

    Wang P W, Liu M J, Jiang L 2016 Acta Phys. Sin. 65 56 (in Chinese) [王鹏伟, 刘明杰, 江雷 2016 物理学报 65 56]

    [3]

    Byrne J D, Betancourt T, Brannon-Peppas L 2008 Adv. Drug Deliver. Rev. 60 1615

    [4]

    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z 2014 Biomaterials 35 5847

    [5]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S, Weiss S 2005 Science 307 538

    [6]

    Taton T A, Mirkin C A, Letsinger R L 2000 Science 289 1757

    [7]

    Wang X H, Zhou Y H 2009 Acta Phys. Sin. 58 4239 (in Chinese) [王兴和, 周延怀 2009 物理学报 58 4239]

    [8]

    Xiong P, Guo P, Xing D, He J S 2006 Acta Phys. Sin. 55 4383 (in Chinese) [熊平, 郭萍, 向东, 何继善 2006 物理学报 55 4383]

    [9]

    Ju H, Roy R A, Murray T W 2013 Biomed. Opt. Express 4 66

    [10]

    Xu C, He W, L Y, Qin C, Shen L, Yin L 2015 Int. J. Pharm. (Amsterdam, Neth.) 493 172

    [11]

    Cho K, Wang X, Nie S, Chen Z, Shin D 2008 Clin. Cancer Res. 14 1310

    [12]

    Slowing I I, Trewyn B G, Giri S, Lin V S Y 2010 Adv. Funct. Mater. 17 1225

    [13]

    Sinha R, Kim G J, Nie S, Shin D M 2006 Mol. Cancer Ther. 5 1909

    [14]

    Labhasetwar V, Song C, Levy R J 1997 Adv. Drug Deliver. Rev. 24 63

    [15]

    Yu S, Kang M, Chang H, Chen K, Yu Y C2006 J. Am. Chem. Soc. 127 17604

    [16]

    Vaijayanthimala V, Tzeng Y, Chang H, Li C 2009 Nanotechnology 20 425103

    [17]

    Vaijayanthimala V, Cheng P, Yeh S, Liu K, Hsiao C, Chao J, Chang H 2012 Biomaterials 33 7794

    [18]

    Dahl J E, Liu S, Carlson R M K 2003 Science 299 96

    [19]

    Arnault J C 2015 Novel Aspects of Diamond 121 85

    [20]

    Zhang Q, Mochalin V N, Neitzel I, Knoke I Y, Han J, Klug C A, Zhou J, Lelkes P I, Gogotsi Y 2011 Biomaterials 32 87

    [21]

    Liu Y, Gu Z, Margrave J L, Khabashesku V N 2004 Chem. Mater. 16 3924

    [22]

    Zhang X, Chen M, Lam R, Xu X, Osawa E, Ho D 2009 ACS Nano 3 2609

    [23]

    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L 2007 Phys. Status Solidi A 204 2881

    [24]

    Krger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii A E, Vul A Y, Ōsawa E 2005 Carbon 43 1722

    [25]

    Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin V N 2016 ACS Appl. Mater. Interfaces 8 25461

    [26]

    Aleksenskiy A E, Eydelman E D, Vul A Y 2011 Nanosci. Nanotechnol. Lett. 3 68

    [27]

    Dong Y, Cao R, Li Y, Wang Z, Li L, Tian L 2015 RSC Adv. 5 82711

    [28]

    Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab N M 2012 New J. Chem. 36 1479

    [29]

    Das G, Nicastri A, Coluccio M L, Gentile F, Candeloro P, Cojoc G, Liberale C, Angelis F D, Fabrizio E D 2010 Microsc. Res. Tech. 73 991

    [30]

    Dong H, Sun X J, Zhang X, Yang D D, Wang X L, Zhang F M 2018 Mater. Rev. 2 189 (in Chinese) [董鸿, 孙晓君, 张欣, 杨豆豆, 王雪亮, 张凤鸣 2018 材料导报 2 189]

    [31]

    Sun C, Qin C, Wang X, Yang G, Shao K, Lan Y, Su Z, Huang P, Wang C, Wang E 2012 Dalton Trans. 41 6906

  • [1]

    Etheridge M L, Campbell S A, Erdman A G, Haynes C L, Wolf S M, Mccullough J 2013 Nanomed. Nanotechnol. 9 1

    [2]

    Wang P W, Liu M J, Jiang L 2016 Acta Phys. Sin. 65 56 (in Chinese) [王鹏伟, 刘明杰, 江雷 2016 物理学报 65 56]

    [3]

    Byrne J D, Betancourt T, Brannon-Peppas L 2008 Adv. Drug Deliver. Rev. 60 1615

    [4]

    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z 2014 Biomaterials 35 5847

    [5]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S, Weiss S 2005 Science 307 538

    [6]

    Taton T A, Mirkin C A, Letsinger R L 2000 Science 289 1757

    [7]

    Wang X H, Zhou Y H 2009 Acta Phys. Sin. 58 4239 (in Chinese) [王兴和, 周延怀 2009 物理学报 58 4239]

    [8]

    Xiong P, Guo P, Xing D, He J S 2006 Acta Phys. Sin. 55 4383 (in Chinese) [熊平, 郭萍, 向东, 何继善 2006 物理学报 55 4383]

    [9]

    Ju H, Roy R A, Murray T W 2013 Biomed. Opt. Express 4 66

    [10]

    Xu C, He W, L Y, Qin C, Shen L, Yin L 2015 Int. J. Pharm. (Amsterdam, Neth.) 493 172

    [11]

    Cho K, Wang X, Nie S, Chen Z, Shin D 2008 Clin. Cancer Res. 14 1310

    [12]

    Slowing I I, Trewyn B G, Giri S, Lin V S Y 2010 Adv. Funct. Mater. 17 1225

    [13]

    Sinha R, Kim G J, Nie S, Shin D M 2006 Mol. Cancer Ther. 5 1909

    [14]

    Labhasetwar V, Song C, Levy R J 1997 Adv. Drug Deliver. Rev. 24 63

    [15]

    Yu S, Kang M, Chang H, Chen K, Yu Y C2006 J. Am. Chem. Soc. 127 17604

    [16]

    Vaijayanthimala V, Tzeng Y, Chang H, Li C 2009 Nanotechnology 20 425103

    [17]

    Vaijayanthimala V, Cheng P, Yeh S, Liu K, Hsiao C, Chao J, Chang H 2012 Biomaterials 33 7794

    [18]

    Dahl J E, Liu S, Carlson R M K 2003 Science 299 96

    [19]

    Arnault J C 2015 Novel Aspects of Diamond 121 85

    [20]

    Zhang Q, Mochalin V N, Neitzel I, Knoke I Y, Han J, Klug C A, Zhou J, Lelkes P I, Gogotsi Y 2011 Biomaterials 32 87

    [21]

    Liu Y, Gu Z, Margrave J L, Khabashesku V N 2004 Chem. Mater. 16 3924

    [22]

    Zhang X, Chen M, Lam R, Xu X, Osawa E, Ho D 2009 ACS Nano 3 2609

    [23]

    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L 2007 Phys. Status Solidi A 204 2881

    [24]

    Krger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii A E, Vul A Y, Ōsawa E 2005 Carbon 43 1722

    [25]

    Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin V N 2016 ACS Appl. Mater. Interfaces 8 25461

    [26]

    Aleksenskiy A E, Eydelman E D, Vul A Y 2011 Nanosci. Nanotechnol. Lett. 3 68

    [27]

    Dong Y, Cao R, Li Y, Wang Z, Li L, Tian L 2015 RSC Adv. 5 82711

    [28]

    Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab N M 2012 New J. Chem. 36 1479

    [29]

    Das G, Nicastri A, Coluccio M L, Gentile F, Candeloro P, Cojoc G, Liberale C, Angelis F D, Fabrizio E D 2010 Microsc. Res. Tech. 73 991

    [30]

    Dong H, Sun X J, Zhang X, Yang D D, Wang X L, Zhang F M 2018 Mater. Rev. 2 189 (in Chinese) [董鸿, 孙晓君, 张欣, 杨豆豆, 王雪亮, 张凤鸣 2018 材料导报 2 189]

    [31]

    Sun C, Qin C, Wang X, Yang G, Shao K, Lan Y, Su Z, Huang P, Wang C, Wang E 2012 Dalton Trans. 41 6906

  • [1] Zhu Yi-Heng, Zhu Zhi-Guang, Chen Cheng-Ke, Jiang Mei-Yan, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation of nanodiamonds based on phase transformation of vertical sheet under atmospheric pressure. Acta Physica Sinica, 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun. Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] Sheng Jie, Wang Kai-Yu, Ma Bei-Bei, Zhu Tao, Jiang Zhong-Ying. Poly-L-lysine induced shape change of negatively charged giant vesicles. Acta Physica Sinica, 2018, 67(15): 158701. doi: 10.7498/aps.67.20180456
    [5] Wu Kong-Ping, Sun Chang-Xu, Ma Wen-Fei, Wang Jie, Wei Wei, Cai Jun, Chen Chang-Zhao, Ren Bin, Sang Li-Wen, Liao Mei-Yong. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Acta Physica Sinica, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [6] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [7] Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning. Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond. Acta Physica Sinica, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [8] Hao Wei-Miao, Yang Xiao-Bao. Theoretical investigations on the electronic modulation of diamond nanocrystals by sulfur modification. Acta Physica Sinica, 2015, 64(5): 056102. doi: 10.7498/aps.64.056102
    [9] Zhang Zhao-Hui, Li Hai-Peng, Mao Shi-Chun. Effect of the structure and the arrangement of organic molecules on the atomic charge and electrostatic interaction. Acta Physica Sinica, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [10] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [11] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. The influence of anharmonicity on the surface effect in nanodiamond. Acta Physica Sinica, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [12] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [13] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [14] Ma Bing-Xian, Jia Yu, Yao Ning, Yang Shi-E, Zhang Bing-Lin. The dynamic control of the templates in selectivity growth from their isomers and the growth mechanism of CVD diamond. Acta Physica Sinica, 2005, 54(9): 4300-4308. doi: 10.7498/aps.54.4300
    [15] Sun Li-Tao, Gong Jin-Long, Zhu Zhi-Yuan, Zhu De-Zhang, He Sui-Xia, Wang Zhen-Xia. Plasma-induced transformation of carbon nanotubes to nanocrystalline diamond. Acta Physica Sinica, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [16] Chen Ai-Xi, Wu Shu-Dong, Jin Li-Xia, Zhan Zhi-Ming. Interaction of a moving two-level atom with a two-mode quantized cavity field. Acta Physica Sinica, 2003, 52(10): 2466-2470. doi: 10.7498/aps.52.2466
    [17] CHEN GUANG-HUA, ZHANG XING-WANG, JI YA-YING, YAN HUI. ELECTRICAL CHARACTERISTICS OF METAL CONTACTS ON DIAMOND FILMS. Acta Physica Sinica, 1997, 46(6): 1188-1192. doi: 10.7498/aps.46.1188
    [18] ZHANG WEN-JUN, HAN LI, HU BO, ZHANG FANG-QING, CHEN GUANG-HUA. NUCLEATION AND GROWTH PROCESS OF TEXTURED DIAMOND FILMS. Acta Physica Sinica, 1996, 45(1): 88-93. doi: 10.7498/aps.45.88
    [19] LUO CHUN-PING, MENG GE, QI SHANG-XUE, LIN ZHANG-DA. STUDIES ON THE INTERACTION OF HYDROGEN ATOMS WITH DIAMOND SURFACE. Acta Physica Sinica, 1991, 40(4): 667-672. doi: 10.7498/aps.40.667
    [20] SHEN ZHU-TONG, WANG LI-JUN, YANG YI-JUAN, NIE JIAN-JUN, LIU YU-MING, ZHANG JUN. THE MECHANISM OF SINTERING POLYCRYSTAL DIAMOND UNDER HIGH PRESSURE——THE INTERACTION BETWEEN THE BINARY INCLUSIONS AND DIAMOND. Acta Physica Sinica, 1978, 27(3): 344-348. doi: 10.7498/aps.27.344
Metrics
  • Abstract views:  11351
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2018
  • Accepted Date:  17 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回