Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states

Wang Xiao-Ka Tang Fu-Ling Xue Hong-Tao Si Feng-Juan Qi Rong-Fei Liu Jing-Bo

Citation:

First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states

Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The first-principles calculation method is used to systematically investigate the lattice structure, energy band, density of states of the bulk Cu2ZnSnS4, surface reconstruction, and mechanism of adsorption and passivation of F, Cl and H atoms on Cu2ZnSnS4 (112) surface. We find that the surface reconstruction occurs on the Cu-Zn-Sn-terminated Cu2ZnSnS4 (112) surface and this reconstruction introduces surface self-passivation. By analyzing the partial density of states of the atoms on the S-terminated Cu2ZnSnS4 (112) surface, it can be seen that surface states near the Fermi level are mainly contributed by 3d orbitals of Cu atoms and 3p orbits of S atoms at the top of the valence band. When a single F, Cl or H atom is adsorbed on the S-terminated Cu2ZnSnS4 (112) surface, all three kinds of atoms exhibit an optimal stability at a specific top adsorption site in comparison with at the bridge, hcp and fcc sites. And this top position is also the position of the S atom that has the greatest influence on the surface states. When two atoms of the same kind are adsorbed on the surface, H, Cl or F atoms occupy the top sites of two S atoms that cause surface states on the Cu2ZnSnS4 (112) surface, which have the lowest adsorption energy. And the surface states near the Fermi level are partially reduced. Therefore, two S atoms that cause the surface states are the main targets of S-terminated Cu2ZnSnS4 (112) surface passivation. It has also been found that the passivation effect of H atom for surface states is the most significant and the effect of Cl atom is better than that of F atom. Comparing the partial density of states, the Bader charge and the differential charge of the atoms before and after adsorption, we find that the main reason for the decrease of the surface states is that the adsorption atoms obtain electrons from the S atoms, and the state density peaks of the Cu and S atoms at the Fermi level almost disappear completely. In the surface model, the F atom obtains the same number of electrons from the two S atoms, while the two S atoms have different effects on the surface states. And the H and Cl atoms obtain fewer electrons from the S atoms, that have less influence on the surface states. It may be the reason why the passivation effect of F atom is slightly less than that of H and Cl atoms.
      Corresponding author: Tang Fu-Ling, tfl03@mails.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764027, 11364025) and Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, China (Grant No. 18LHPY003).
    [1]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi R 9 28

    [2]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [3]

    Pandiyan R, Elhmaidi Z O, Sekkat Z, Abd-lefdil M, Khakani M A E 2017 Appl. Surf. Sci. 396 1562

    [4]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energ. Mat. Sol. C 93 583

    [5]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 J. Phys. D: Appl. Phys. 49 285107

    [6]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mat. Sol. C 65 141

    [7]

    Kumar Y B K, Babu G S, Bhaskar P U, Vanjari S R 2009 Sol. Energy Mat. Sol. C 93 1230

    [8]

    Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [9]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [10]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Shockley W 1961 Czech. J. Phys. 11 81

    [13]

    Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q, Fu Z W 2017 Nat. Commun. 8 566

    [14]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018212

    [15]

    Furuta K, Sakai N, Kato T, Sugimoto H, Kurokawa Y, Yamada A 2015 Phys. Status Solidi C 12 704

    [16]

    Lee Y S, Gershon T, Todorov T K, Wang W, Winkler M T, Hopstaken M, Gunawan O, Kim J 2016 Adv. Energy Mater. 6 1600198

    [17]

    Lin Y R, Tunuguntla V, Wei S Y, Chen W C, Wong D, Lai C H, Liu L K, Chen L C, Chen K H 2015 Nano Energy 16 438

    [18]

    Xing Q Q, Yang Y, Chen J, Chao M M, Zhang L 2015 Taipei 2 1

    [19]

    Ohno T, Shiraishi K J 1990 Phys. Rev. B 42 11194

    [20]

    Wang W C, Lee G, Huang M, Wallace R, Cho K 2010 J. Appl. Phys. 107 103720

    [21]

    Medaboina D, Gade V, Patil S K R, Khare S V 2007 Phys. Rev. B 76 205327

    [22]

    Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M 2013 Sol. Energy Mat. Sol. C 117 505

    [23]

    Vermang B, Fjällström V, Gao X, Edoff M 2014 IEEE J. Photovolt. 4 486

    [24]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B 2017 Appl. Surf. Sci. 394 58

    [25]

    Huang W X, Li Q, Chen Y H, Xia Y D, Huang H H, Dun C C, Li Y, Carroll D 2014 Sol. Energy Mat. Sol. C 127 188

    [26]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Yu J, Lin X, Wang J J, Chen J, Huang W D 2009 Appl. Surf. Sci. 255 9032

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Zhou W W, Zhou J J, Shen J Q, Ouyang C Y, Shi S Q 2012 J. Phys. Chem. Solids 73 245

    [31]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B: Condens. Matter 49 16223

    [32]

    Zhou J G, Causon D M, Mingham C G, Ingram D M 2001 J. Comput. Phys. 168 1

    [33]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [34]

    Karazhanov S, Ravindran P, Grossner U, Kjekhus A, Fjellvag H, Svensson B G 2006 J. Cryst. Growth 287 162

    [35]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [36]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [37]

    Huang D, Persson C 2013 Thin Solid Films 535 265

    [38]

    Ma L C, Zhang J M, Xu K W 2013 Physica E 50 1

    [39]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [40]

    Hall S R, Szymański J T, Stewart J M 1978 Can. Mineral 16 131

    [41]

    He X C, Shen H L 2011 Physica B 406 4604

    [42]

    Chen S Y, Gong X W, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [43]

    Han G, Lu J H, Wang M, Li D Y 2016 Mater. Rev. 30 50 (in Chinese) [韩贵, 陆金花, 王敏, 李丹阳 2016 材料导报 30 50]

    [44]

    Persson C 2010 J. Appl. Phys. 107 053710

    [45]

    Reshak A H, Nouneh K, Kityk I V, Bila J, Auluck S, Kamarudin H, Sekkat Z 2014 Int. J. Electrochem. Sci. 9 955

    [46]

    Li D F, Zu X T, Xiao H Y, Liu K Z 2009 J. Alloys Compd. 467 557

    [47]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [48]

    Chen L L, Wang X F, Shi S Q, Cui Y Y, Luo H J, Gao Y F 2016 Appl. Surf. Sci. 367 507

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

  • [1]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi R 9 28

    [2]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [3]

    Pandiyan R, Elhmaidi Z O, Sekkat Z, Abd-lefdil M, Khakani M A E 2017 Appl. Surf. Sci. 396 1562

    [4]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energ. Mat. Sol. C 93 583

    [5]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 J. Phys. D: Appl. Phys. 49 285107

    [6]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mat. Sol. C 65 141

    [7]

    Kumar Y B K, Babu G S, Bhaskar P U, Vanjari S R 2009 Sol. Energy Mat. Sol. C 93 1230

    [8]

    Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [9]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [10]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Shockley W 1961 Czech. J. Phys. 11 81

    [13]

    Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q, Fu Z W 2017 Nat. Commun. 8 566

    [14]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018212

    [15]

    Furuta K, Sakai N, Kato T, Sugimoto H, Kurokawa Y, Yamada A 2015 Phys. Status Solidi C 12 704

    [16]

    Lee Y S, Gershon T, Todorov T K, Wang W, Winkler M T, Hopstaken M, Gunawan O, Kim J 2016 Adv. Energy Mater. 6 1600198

    [17]

    Lin Y R, Tunuguntla V, Wei S Y, Chen W C, Wong D, Lai C H, Liu L K, Chen L C, Chen K H 2015 Nano Energy 16 438

    [18]

    Xing Q Q, Yang Y, Chen J, Chao M M, Zhang L 2015 Taipei 2 1

    [19]

    Ohno T, Shiraishi K J 1990 Phys. Rev. B 42 11194

    [20]

    Wang W C, Lee G, Huang M, Wallace R, Cho K 2010 J. Appl. Phys. 107 103720

    [21]

    Medaboina D, Gade V, Patil S K R, Khare S V 2007 Phys. Rev. B 76 205327

    [22]

    Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M 2013 Sol. Energy Mat. Sol. C 117 505

    [23]

    Vermang B, Fjällström V, Gao X, Edoff M 2014 IEEE J. Photovolt. 4 486

    [24]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B 2017 Appl. Surf. Sci. 394 58

    [25]

    Huang W X, Li Q, Chen Y H, Xia Y D, Huang H H, Dun C C, Li Y, Carroll D 2014 Sol. Energy Mat. Sol. C 127 188

    [26]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Yu J, Lin X, Wang J J, Chen J, Huang W D 2009 Appl. Surf. Sci. 255 9032

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Zhou W W, Zhou J J, Shen J Q, Ouyang C Y, Shi S Q 2012 J. Phys. Chem. Solids 73 245

    [31]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B: Condens. Matter 49 16223

    [32]

    Zhou J G, Causon D M, Mingham C G, Ingram D M 2001 J. Comput. Phys. 168 1

    [33]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [34]

    Karazhanov S, Ravindran P, Grossner U, Kjekhus A, Fjellvag H, Svensson B G 2006 J. Cryst. Growth 287 162

    [35]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [36]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [37]

    Huang D, Persson C 2013 Thin Solid Films 535 265

    [38]

    Ma L C, Zhang J M, Xu K W 2013 Physica E 50 1

    [39]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [40]

    Hall S R, Szymański J T, Stewart J M 1978 Can. Mineral 16 131

    [41]

    He X C, Shen H L 2011 Physica B 406 4604

    [42]

    Chen S Y, Gong X W, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [43]

    Han G, Lu J H, Wang M, Li D Y 2016 Mater. Rev. 30 50 (in Chinese) [韩贵, 陆金花, 王敏, 李丹阳 2016 材料导报 30 50]

    [44]

    Persson C 2010 J. Appl. Phys. 107 053710

    [45]

    Reshak A H, Nouneh K, Kityk I V, Bila J, Auluck S, Kamarudin H, Sekkat Z 2014 Int. J. Electrochem. Sci. 9 955

    [46]

    Li D F, Zu X T, Xiao H Y, Liu K Z 2009 J. Alloys Compd. 467 557

    [47]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [48]

    Chen L L, Wang X F, Shi S Q, Cui Y Y, Luo H J, Gao Y F 2016 Appl. Surf. Sci. 367 507

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

  • [1] Zhao Jun, Yao Can, Zeng Hui. Theoretical study of adsorption properties and electrical transport performance of toxic gas molecules on novel orthorhombic BN monolayer semiconductor. Acta Physica Sinica, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [2] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [3] Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao. First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Physica Sinica, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [4] Li Xiao-Lin, Yuan Kun, He Jia-Le, Liu Hong-Feng, Zhang Jian-Bo, Zhou Yang. First principle study of adsorption and desorption behaviors of NH3 molecule on the TaC (0001) surface. Acta Physica Sinica, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [5] Lin Ming-Yue, Ju Bo, Li Yan, Chen Xue-Lian. Performance of 2-bromoterephthalic acid passivated all-inorganic perovskite cells. Acta Physica Sinica, 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [6] Adsorption and Desorption Behaviors of the NH3 Molecule on the TaC (0001) surface: A First-Principles Study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210400
    [7] Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Physica Sinica, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [8] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [10] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [11] He Yan-Bin, Jia Jian-Feng, Wu Hai-Shun. First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface. Acta Physica Sinica, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [12] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [14] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [15] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] Zhang Xiang, Liu Bang-Wu, Xia Yang, Li Chao-Bo, Liu Jie, Shen Ze-Nan. The passivation of Al2O3 and its applications in the crystalline silicon solar cell. Acta Physica Sinica, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [17] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] Cao Yi-Jie, Ren Bao-Xing, Chen Yu-Hong. First-principles study on the catalytic role of Ti in the hydrogenation of Al(110) surfaces. Acta Physica Sinica, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [19] Zhao Wei, Wang Jia-Dao, Liu Feng-Bin, Chen Da-Rong. First principles study of H2O molecule adsorption on Fe(100), Fe(110) and Fe(111) surfaces. Acta Physica Sinica, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
Metrics
  • Abstract views:  7082
  • PDF Downloads:  132
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2018
  • Accepted Date:  24 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回