-
Gallium oxide (Ga2O3) has five crystalline polymorphs, i.e. corundum (α-phase), monoclinic (β-phase), spinel (γ-phase), bixbite (δ-phase) and orthorhombic (ε-phase). Among these phases, the monoclinic structured β-Ga2O3 is the most stable form, and is a ultraviolet (UV) transparent semiconductor with a wide band gap of 4.9 eV. It is a promising candidate for applications in UV transparent electrodes, solar-blind photodetectors, gas sensors and optoelectronic devices. In recent years, one-dimensional (1D) nanoscale semiconductor structures, such as nanowires, nanobelts, and nanorods, have attracted considerable attention due to their interesting fundamental properties and potential applications in nanoscale opto-electronic devices.Numerous efforts have been made to fabricate such devices in 1D nanostructures such as nanowires and nanorods. Comparing with the thin film form, the device performance in the 1D form is significantly enhanced as the surface-to-volume ratio increases. In order to realize β-Ga2O3 based nano-optoelectronic devices, it is necessary to obtain controlled-synthesis and the high-quality β-Ga2O3 nanomaterials. According to the present difficulties in synthesizing β-Ga2O3 nanomaterials, in this paper, the grid-like β-Ga2O3 nanowires are prepared on sapphire substrates via electric field assisted chemical vapor deposition method.High-purity metallic Ga (99.99%) is used as Ga vapor source. High-purity Ar gas is used as carrier gas. The flow rate of high-purity Ar carrier gas is controlled at 200 sccm. Then, oxygen reactant gas with a flow rate of 2 sccm enters into the system. The temperature is kept at 900℃ for 20 min. The effect of the external electric voltage on the surface morphology, crystal structure and optical properties of β-Ga2O3 nanowires are investigated. It is found that the external electric voltage has a great influence on the surface morphology of the sample. The orientation of the β-Ga2O3 nanowires grown under the action of an applied electric field begins to improve. Only a grid composed of three different growth directions appears. And with the increase of applied voltage, the distribution of nanowires becomes denser and the length increases significantly. In addition, it is found that the chemical vapor deposition method assisted by this external electric field can significantly improve the crystallization and optical quality of the samples.
-
Keywords:
- external electric field /
- chemical vapor deposition /
- β-Ga2O3 /
- nanowires
[1] Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]
[2] Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964
[3] Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972
[4] Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]
[5] Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450
[6] Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669
[7] Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33
[8] Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185
[9] Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439
[10] Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367
[11] Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904
[12] Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003
[13] Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906
[14] Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178
[15] Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001
[16] Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120
[17] Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213
[18] Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678
[19] Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23
[20] Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399
[21] Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075
[22] Zong X, Zhu R 2014 Nanoscale 6 12732
[23] Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101
-
[1] Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]
[2] Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964
[3] Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972
[4] Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]
[5] Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450
[6] Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669
[7] Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33
[8] Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185
[9] Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439
[10] Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367
[11] Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904
[12] Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003
[13] Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906
[14] Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178
[15] Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001
[16] Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120
[17] Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213
[18] Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678
[19] Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23
[20] Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399
[21] Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075
[22] Zong X, Zhu R 2014 Nanoscale 6 12732
[23] Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101
Catalog
Metrics
- Abstract views: 6567
- PDF Downloads: 136
- Cited By: 0