Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method

Feng Qiu-Ju Li Fang Li Tong-Tong Li Yun-Zheng Shi Bo Li Meng-Ke Liang Hong-Wei

Citation:

Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method

Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gallium oxide (Ga2O3) has five crystalline polymorphs, i.e. corundum (α-phase), monoclinic (β-phase), spinel (γ-phase), bixbite (δ-phase) and orthorhombic (ε-phase). Among these phases, the monoclinic structured β-Ga2O3 is the most stable form, and is a ultraviolet (UV) transparent semiconductor with a wide band gap of 4.9 eV. It is a promising candidate for applications in UV transparent electrodes, solar-blind photodetectors, gas sensors and optoelectronic devices. In recent years, one-dimensional (1D) nanoscale semiconductor structures, such as nanowires, nanobelts, and nanorods, have attracted considerable attention due to their interesting fundamental properties and potential applications in nanoscale opto-electronic devices.Numerous efforts have been made to fabricate such devices in 1D nanostructures such as nanowires and nanorods. Comparing with the thin film form, the device performance in the 1D form is significantly enhanced as the surface-to-volume ratio increases. In order to realize β-Ga2O3 based nano-optoelectronic devices, it is necessary to obtain controlled-synthesis and the high-quality β-Ga2O3 nanomaterials. According to the present difficulties in synthesizing β-Ga2O3 nanomaterials, in this paper, the grid-like β-Ga2O3 nanowires are prepared on sapphire substrates via electric field assisted chemical vapor deposition method.High-purity metallic Ga (99.99%) is used as Ga vapor source. High-purity Ar gas is used as carrier gas. The flow rate of high-purity Ar carrier gas is controlled at 200 sccm. Then, oxygen reactant gas with a flow rate of 2 sccm enters into the system. The temperature is kept at 900℃ for 20 min. The effect of the external electric voltage on the surface morphology, crystal structure and optical properties of β-Ga2O3 nanowires are investigated. It is found that the external electric voltage has a great influence on the surface morphology of the sample. The orientation of the β-Ga2O3 nanowires grown under the action of an applied electric field begins to improve. Only a grid composed of three different growth directions appears. And with the increase of applied voltage, the distribution of nanowires becomes denser and the length increases significantly. In addition, it is found that the chemical vapor deposition method assisted by this external electric field can significantly improve the crystallization and optical quality of the samples.
      Corresponding author: Feng Qiu-Ju, qjfeng@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574026, 11405017) and the Natural Science Foundation of Liaoning Province, China (Grant No. 201602453).
    [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1]

    Ma H L, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)[马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322]

    [2]

    Feng Q J, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C, Liang H W 2016 J. Alloys Compd. 687 964

    [3]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972

    [4]

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701 (in Chinese)[马海林, 苏庆 2014 物理学报 63 116701]

    [5]

    Hegde M, Hosein I D, Radovanovic P V 2015 J. Phys. Chem. C 119 17450

    [6]

    Kumar R, Dubey P K, Singh R K, Vaz A R, Moshkalev S A 2016 RSC Adv. 6 17669

    [7]

    Miller D R, Akbar S A, Morris P A 2017 Nano-Micro Lett. 9 33

    [8]

    Gu Y Y, Su Y J, Chen D, Geng H J, Li Z L, Zhang L Y, Zhang Y F 2014 Cryst. Eng. Comm. 16 9185

    [9]

    Tang C M, Liao X Y, Zhong W J, Yu H Y, Liu Z W 2017 RSC Adv. 7 6439

    [10]

    Peng M Z, Zheng X H, Ma Z G, Chen H, Liu S J, He Y F, Li M L 2018 Sens. Actuators, B 256 367

    [11]

    Li Y W, Stoica V A, Sun K, Liu W, Endicott L, Walrath J C, Chang A S, Lin Y H, Pipe K P, Goldman R S, Uher C, Clarke R 2014 Appl. Phys. Lett. 105 201904

    [12]

    Tsivion D, Schvartzman M, Popovitz B R, Huth P V, Joselevich E 2011 Science 333 1003

    [13]

    Lee S A, Hwang J Y, Kim J P, Jeong S Y, Cho C R 2006 Appl. Phys. Lett. 89 182906

    [14]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178

    [15]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001

    [16]

    Jangir R, Porwal S, Tiwari P, Mondal P, Rai S K, Srivastava A K, Bhaumik I, Ganguli T 2016 AIP Adv. 6 035120

    [17]

    Lee S Y, Choi K H, Kang H C 2016 Mater. Lett. 176 213

    [18]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Phys. Mater. C 3 4678

    [19]

    Terasako T, Kawasaki Y, Yagi M 2016 Thin Solid Films 620 23

    [20]

    Smith P A, Nordquist C D, Jackson T N, Mayer T S 2000 Appl. Phys. Lett. 77 1399

    [21]

    Kumar M S, Lee S H, Kim T Y, Kim T H, Song S M, Yang J W, Nahm K S, Suh E K 2003 Solid-State Electron. 47 2075

    [22]

    Zong X, Zhu R 2014 Nanoscale 6 12732

    [23]

    Kumar S, Sarau G, Tessarek C, Bashouti M Y, Hähnel A, Christiansen S, Singh R 2014 J. Phys. D: Appl. Phys. 47 435101

  • [1] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] Zhao Bo-Shuo, Qiang Xiao-Yong, Qin Yue, Hu Ming. Tungsten oxide nanowire gas sensor preparation and P-type NO2 sensing properties at room temperature. Acta Physica Sinica, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [6] Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu. Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide. Acta Physica Sinica, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] Zheng Shu-Wen, Fan Guang-Han, He Miao, Zhao Ling-Zhi. Theoretical study of the effect of W-doping on the conductivity of β-Ga2O3. Acta Physica Sinica, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [9] Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin. P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature. Acta Physica Sinica, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [10] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [11] Xu Guo-Liang, Liu Xue-Feng, Xia Yao-Zheng, Zhang Xian-Zhou, Liu Yu-Fang. Excitation of Si2O molecule under external electric field. Acta Physica Sinica, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [12] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [15] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [16] Hu Hai-Ning, Chen Jing-Lan, Wu Guang-Heng, Chen Li-Jie, Liu He-Yan, Li Yang-Xian, Qu Jing-Ping. Magnetic properties of electrodeposited Fe and FePd nanowire arrays. Acta Physica Sinica, 2005, 54(9): 4370-4373. doi: 10.7498/aps.54.4370
    [17] Li Zhi-Jie, Pan Xue-Ling, Sun Wei-Min, Qu Jia-Hui, Wang Fu. Production and character of Al3O3N nanowires. Acta Physica Sinica, 2005, 54(1): 450-453. doi: 10.7498/aps.54.450
    [18] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  6412
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2018
  • Accepted Date:  19 July 2018
  • Published Online:  05 November 2018

/

返回文章
返回