Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide

Li Yan Li Jiao Chen Li-Li Lian Xiao-Xue Zhu Jun-Wu

Citation:

Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide

Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Control and administration of various dangerous gases existing in the environment is very important both for safety in the workplace and for quality of daily life, such as acetone and ethanol, etc. Zinc oxide, a well-known n-type semiconductor with a direct wide band-gap of 3.37 eV, is a very promising gas sensing material. However, zinc oxide's limited selectivity, relatively long response/recovery time, high-power consumption, and lack of long-term stability have restricted its applications in high-standard gas detection. Therefore, increasing gas sensing selectivity is a crucial issue for ZnO application in the gas sensing field. So far, many researches have reported and discussed the effects of morphologies, structures, doping of gas sensing materials, on its sensing performance. In this work, we intend to investigate and theoretically analyze how the polarization of the external electric field affects gas sensing performance and selectivity. Zinc oxide nanoparticles, as a testing gas sensing material, are synthesized by simple precipitation method. Then they are pressed into a disc and polarized under an external electric field with different electric field intensities at different temperatures. The structure and Raman activity for each of the unpolarized ZnO and the polarized ZnO are characterized using X-ray diffraction and Raman spectrometry, respectively. The gas sensing performances of unpolarized and polarized ZnO based sensors to ethanol and acetone are carefully examined using a chemical gas sensing system. The mechanism of external electric field polarization effect on gas sensitivity is discussed. The results reveal that there exists a threshold value for each of voltage and temperature for ZnO polarization under an external electric field. When the voltage and temperature are over 9375 V·cm-1 and 150℃, respectively, the leakage of electricity in ZnO disk happens and the polarization effect gradually disappears. Within the above voltage and temperature limits, Raman peak intensity of the polarized ZnO at 437 cm-1 obviously decreases after external electric field polarization. The response of the polarized ZnO sensor to acetone increases with external electronic field and polarization temperature increasing, while the response to ethanol decreases, which indicates that external electric field polarization can effectively adjust the gas sensing selectivity of nano zinc oxide. Raman analysis indirectly shows that the enhanced gas sensing selectivity of ZnO by the polarization effect of the external electric field is due to oxygen vacancy and zinc vacancy directionally moving under the action of an external electric field. Thus it can be seen that the polarization of the external electric field acting on gas sensing material is a promising effective method to improve gas sensing selectivity.
      Corresponding author: Li Yan, liyan01898@163.com
    • Funds: Project supported by the Opening Project of Key Laboratory for Soft Chemistry and Functional Materials (Nanjing University of Science and Technology), Ministry of Education, China (Grant No. 30916014103).
    [1]

    Wang J X, Yang J, Han N, Zhou X Y, Gong S Y, Yang J F, Hu P, Chen Y F 2017 Mater. Design 121 69

    [2]

    Pushpa N, Kokila M K 2017 J. Lumin. 190 100

    [3]

    Park S H, Hong W P, Kim J J 2017 Solid State Commun. 261 21

    [4]

    Xu J Q, Xue Z J, Qin N, Cheng Z X, Xiang Q 2017 Sensor Actuat. B: Chem. 242 148

    [5]

    Calestani D, Villani M, Culiolo M, Delmonte D, Coppedé N, Zappettini A 2017 Sensor Actuat. B: Chem. 245 166

    [6]

    Yang S, Liu Y L, Chen T, Jin W, Yang T Q, Cao M C, Liu S S, Zhou J, Zakharova G S, Chen W 2017 Appl. Surf. Sci. 393 377

    [7]

    Chen R S, Wang J, Xia Y, Xiang L 2018 Sensor Actuat. B: Chem. 255 2538

    [8]

    Wang H, Li H Y, Li S C, Liu L, Wang L Y, Guo X X 2017 J. Mater. Sci.: Mater. El. 28 958

    [9]

    Pimpang P, Zoolfakar A S, Rani R A, Kadir R A, Wongratanaphisan D, Gardchareon A, Kalantar-zadeh K, Choopun S 2017 Ceram. Int. 43 S511

    [10]

    Al-Hadeethi Y, Umar A, Al-Heniti S H, Kumar R, Kim S H, Zhang X X, Raffah B M 2017 Ceram. Int. 43 2418

    [11]

    Khayatian A, Safa S, Azimirad R, Kashi M A, Akhtarianfar S F 2016 Physica E 84 71

    [12]

    Lupan O, Postica V, Gröttrup J, Mishra A K, Leeuw N H, Adelung R 2017 Sensor Actuat. B: Chem. 245 448

    [13]

    Uddin A S M I, Phan D T, Chung G S 2015 Sensor Actuat. B: Chem. 207 362

    [14]

    Kim G, Bernholc J, Kwon Y K 2010 Appl. Phys. Lett. 97 063113

    [15]

    Tang K, Qin R, Zhou J, Qu H, Zheng J X, Fei R X, Li H, Zheng Q Y, Gao Z X, Lu J 2011 J. Phys. Chem. C 115 9458

    [16]

    Alfieri J, Kimoto T 2010 Appl. Phys. Lett. 97 043108

    [17]

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103 (in Chinese) [安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103]

    [18]

    Wang Y Z, Wang B L, Zhang Q F, Zhao J J, Shi D N, Yunoki S J, Kong F J, Xu N 2012 J. Appl. Phys. 111 073704

    [19]

    Zhang Q, Qi J J, Huang Y H, Li X, Zhang Y 2011 Appl. Phys. Lett. 99 063105

    [20]

    Li S M, Zhang L X, Zhu M Y, Ji G J, Zhao L X, Yin J, Bie L J 2017 Sensor Actuat. B: Chem. 249 611

    [21]

    Li Y, Liu M, L T, Wang Q, Zhou Y L, Lian X X, Liu H P 2015 Electron. Mater. Lett. 11 1085

    [22]

    Hansen M, Truong J, Xie T, Hahm J 2017 Nanoscale 9 8470

    [23]

    Jammula R K, Pittala S, Srinath S, Srikanth V V S S 2015 Phys. Chem. Chem. Phys. 17 17237

    [24]

    Ni H Q, Lu Y F, Liu Z Y, Qiu H, Wang W J, Ren Z M, Chow S K, Jie Y X 2001 Appl. Phys. Lett. 79 812

    [25]

    David R L 2005 CRC Handbook of Chemistry and Physics (Boca Raton: Copyright CRC Press LLC) pp9-47

    [26]

    Gholami M, Khodadadi A, Firooz A, Mortazavi Y 2015 Sensor Actuat. B: Chem. 212 395

  • [1]

    Wang J X, Yang J, Han N, Zhou X Y, Gong S Y, Yang J F, Hu P, Chen Y F 2017 Mater. Design 121 69

    [2]

    Pushpa N, Kokila M K 2017 J. Lumin. 190 100

    [3]

    Park S H, Hong W P, Kim J J 2017 Solid State Commun. 261 21

    [4]

    Xu J Q, Xue Z J, Qin N, Cheng Z X, Xiang Q 2017 Sensor Actuat. B: Chem. 242 148

    [5]

    Calestani D, Villani M, Culiolo M, Delmonte D, Coppedé N, Zappettini A 2017 Sensor Actuat. B: Chem. 245 166

    [6]

    Yang S, Liu Y L, Chen T, Jin W, Yang T Q, Cao M C, Liu S S, Zhou J, Zakharova G S, Chen W 2017 Appl. Surf. Sci. 393 377

    [7]

    Chen R S, Wang J, Xia Y, Xiang L 2018 Sensor Actuat. B: Chem. 255 2538

    [8]

    Wang H, Li H Y, Li S C, Liu L, Wang L Y, Guo X X 2017 J. Mater. Sci.: Mater. El. 28 958

    [9]

    Pimpang P, Zoolfakar A S, Rani R A, Kadir R A, Wongratanaphisan D, Gardchareon A, Kalantar-zadeh K, Choopun S 2017 Ceram. Int. 43 S511

    [10]

    Al-Hadeethi Y, Umar A, Al-Heniti S H, Kumar R, Kim S H, Zhang X X, Raffah B M 2017 Ceram. Int. 43 2418

    [11]

    Khayatian A, Safa S, Azimirad R, Kashi M A, Akhtarianfar S F 2016 Physica E 84 71

    [12]

    Lupan O, Postica V, Gröttrup J, Mishra A K, Leeuw N H, Adelung R 2017 Sensor Actuat. B: Chem. 245 448

    [13]

    Uddin A S M I, Phan D T, Chung G S 2015 Sensor Actuat. B: Chem. 207 362

    [14]

    Kim G, Bernholc J, Kwon Y K 2010 Appl. Phys. Lett. 97 063113

    [15]

    Tang K, Qin R, Zhou J, Qu H, Zheng J X, Fei R X, Li H, Zheng Q Y, Gao Z X, Lu J 2011 J. Phys. Chem. C 115 9458

    [16]

    Alfieri J, Kimoto T 2010 Appl. Phys. Lett. 97 043108

    [17]

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103 (in Chinese) [安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103]

    [18]

    Wang Y Z, Wang B L, Zhang Q F, Zhao J J, Shi D N, Yunoki S J, Kong F J, Xu N 2012 J. Appl. Phys. 111 073704

    [19]

    Zhang Q, Qi J J, Huang Y H, Li X, Zhang Y 2011 Appl. Phys. Lett. 99 063105

    [20]

    Li S M, Zhang L X, Zhu M Y, Ji G J, Zhao L X, Yin J, Bie L J 2017 Sensor Actuat. B: Chem. 249 611

    [21]

    Li Y, Liu M, L T, Wang Q, Zhou Y L, Lian X X, Liu H P 2015 Electron. Mater. Lett. 11 1085

    [22]

    Hansen M, Truong J, Xie T, Hahm J 2017 Nanoscale 9 8470

    [23]

    Jammula R K, Pittala S, Srinath S, Srikanth V V S S 2015 Phys. Chem. Chem. Phys. 17 17237

    [24]

    Ni H Q, Lu Y F, Liu Z Y, Qiu H, Wang W J, Ren Z M, Chow S K, Jie Y X 2001 Appl. Phys. Lett. 79 812

    [25]

    David R L 2005 CRC Handbook of Chemistry and Physics (Boca Raton: Copyright CRC Press LLC) pp9-47

    [26]

    Gholami M, Khodadadi A, Firooz A, Mortazavi Y 2015 Sensor Actuat. B: Chem. 212 395

  • [1] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] Zhang Yu-Ye, Zhang Yi-Yi, Wei Wen-Chang, Su Zhi-Cheng, Lan Dan-Quan, Luo Shi-Hao. Molecular dynamics simulation of mechanical and thermal properties of nano-zinc oxide modified cellulose insulating paper. Acta Physica Sinica, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [3] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] Li Dong-Ke, He Bing-Yan, Chen Kun-Quan, Pi Ming-Yu, Cui Yu-Ting, Zhang Ding-Ke. Xylene gas sensing performance of Au nanoparticlesloaded WO3 nanoflowers. Acta Physica Sinica, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [6] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [7] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] Li Shi-Xiong, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie. Ground state properties and spectral properties of borospherene B40 under different external electric fields. Acta Physica Sinica, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [9] Yang Tao, Liu Dai-Jun, Chen Jian-Jun. Molecular structure and properties of sulfur dioxide under the external electric field. Acta Physica Sinica, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [10] Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun. Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite. Acta Physica Sinica, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [11] Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng. Properties of ground state and spectrum of CdSe in different external electric fields. Acta Physica Sinica, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [12] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [13] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [14] Hu Jie, Deng Xiao, Sang Sheng-Bo, Li Peng-Wei, Li Gang, Zhang Wen-Dong. Fabrication and characteristics of ZnO nanowires array gas sensor based on microfluidics. Acta Physica Sinica, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [15] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [16] Du Jian-Bin, Tang Yan-Lin, Long Zhen-Wen. Molecular structure and electronic spectrum of pentachlorophenol in the external electric field. Acta Physica Sinica, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [17] Yan An-Ying, Jiang Ming, Zhang Chuan-Wu, Miao Feng, Gou Fu-Jun. Energy and spectrum of BeO molecule under the electric field from different directions. Acta Physica Sinica, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [18] Xu Guo-Liang, Lü Wen-Jing, Liu Yu-Fang, Zhu Zun-Lüe, Zhang Xian-Zhou, Sun Jin-Feng. Effect of external electric field on the optical excitation of silicon dioxide. Acta Physica Sinica, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [19] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [20] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
Metrics
  • Abstract views:  6994
  • PDF Downloads:  168
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2018
  • Accepted Date:  30 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回