Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic and optical properties of sulfur-doped zinc oxide nanowires

HUANG Jungang FANG Yimei JIANG Yinhe ZHENG Kai CHEN Kaixuan CHENG Meijuan LIN Qiubao

Citation:

First-principles study of electronic and optical properties of sulfur-doped zinc oxide nanowires

HUANG Jungang, FANG Yimei, JIANG Yinhe, ZHENG Kai, CHEN Kaixuan, CHENG Meijuan, LIN Qiubao
cstr: 32037.14.aps.74.20250495
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Based on first-principles calculations within the framework of density functional theory, the structural features, electronic and optical properties of sulfur-doped ZnO nanowires are systematically investigated in this work, revealing the regulation mechanism of doping on material performance. The results show that sulfur incorporation induces local lattice distortions in ZnO, resulting in a substitutional doping structure. These structural modifications significantly affect the electronic properties, causing the Fermi level to shift toward the bottom of the conduction band and a redshift in the band gap. Importantly, the orbital-projected band structures reveal that the 3p orbitals of sulfur generate impurity states near the top of the valence band, thereby enhancing both carrier concentration and mobility. Furthermore, sulfur doping leads to a notable change in the optical properties, including the emergence of new characteristic peaks in both the real and imaginary parts of the dielectric function, as well as considerable increases in optical parameters such as the absorption coefficient, extinction coefficient, and reflectivity. Moreover, as the doping concentration increases, the changes in optical properties become more pronounced. Overall, this investigation offers valuable theoretical insights into optimizing the performance of sulfur-doped ZnO nanowires in optoelectronic applications, such as photodetectors and light-emitting diodes, revealing the intrinsic correlation mechanism between the microscopic electronic structure and the macroscopic optical response.
      Corresponding author: CHENG Meijuan, meijuan@jmu.edu.cn ; LIN Qiubao, lqb@jmu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2022J05159), the Natural Science Foundation of Xiamen, China (Grant No. 3502Z20227059), and the National Natural Science Foundation of China (Grant No. 12304083).
    [1]

    Djurišić Dr A B, Leung Y H 2006 Small 2 944Google Scholar

    [2]

    Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, Liu J 2006 Nano Lett. 6 1126Google Scholar

    [3]

    Foreman J V, Everitt H O, Yang J, Liu J J 2007 Appl. Phys. Lett. 91 011902Google Scholar

    [4]

    Özgür Ü, Alivov Y I, Liu C L, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [5]

    Triboulet R, Perrière J 2003 Prog. Cryst. Growth Charact. Mater. 47 65Google Scholar

    [6]

    Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D 2005 Nano Lett. 5 1231Google Scholar

    [7]

    Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001 Adv. Mater. 13 113Google Scholar

    [8]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897Google Scholar

    [9]

    Li S Y, Lin P, Lee C Y, Tseng T Y 2004 J. Appl. Phys. 95 3711Google Scholar

    [10]

    Liu C H, Zapien J A, Yao Y, Meng X M, Lee C S, Fan S S, Lifshitz Y, Lee S T 2003 Adv. Mater. 15 838Google Scholar

    [11]

    Yao B D, Chan Y F, Wang N 2002 Appl. Phys. Lett. 81 757Google Scholar

    [12]

    Guo M, Diao P, Cai S M 2005 J. Solid State Chem. 178 1864Google Scholar

    [13]

    Hartanto A B, Ning X, Nakata Y, Okada T 2004 Appl. Phys. A: Mater. Sci. Process. 78 299Google Scholar

    [14]

    Liu B, Zeng H C 2003 J. Am. Chem. Soc. 125 4430Google Scholar

    [15]

    Park W, Jun Y, Jung S, Yi G C 2003 Appl. Phys. Lett. 82 964Google Scholar

    [16]

    Yu W D, Li X M, Gao X D 2004 Appl. Phys. Lett. 84 2658Google Scholar

    [17]

    Delin A, Ravindran P, Eriksson O, Wills J M 1998 Int. J. Quantum Chem. 69 349Google Scholar

    [18]

    Ravindran P, Delin A, Johansson B, Eriksson O, Wills J M 1999 Phys. Rev. B 59 1776Google Scholar

    [19]

    Lucarelli A, Lupi S, Calvani P, Maselli P, De Marzi G, Roy P, Saini N L, Bianconi A, Ito T, Oka K 2002 Phys. Rev. B 65 054551Google Scholar

    [20]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvåg H, Svensson B G 2007 Phys. Rev. B 75 155104Google Scholar

    [21]

    Kong F J, Jiang G 2009 Physica B 404 2340Google Scholar

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [23]

    Schmidt-Mende L, Macmanus-Driscoll J L 2007 Mater. Today 10 40Google Scholar

    [24]

    Choi A, Kim K, Jung H I, Lee S Y 2010 Sens. Actuat. B 148 577Google Scholar

    [25]

    Shi L H, Chen J, Zhang G, Li B W 2012 Phys. Lett. A 376 978Google Scholar

    [26]

    Zhao Q D, Xie T F, Peng L L, Lin Y H, Wang P, Peng L, Wang D J 2007 J. Phys. Chem. C 111 17136Google Scholar

    [27]

    Mousavi S H, Haratizadeh H, Kitai A H 2011 Mater. Lett. 65 2470Google Scholar

    [28]

    Cho J, Lin Q B, Yang S, Simmons J G, Cheng Y W, Lin E, Yang J Q, Foreman J V, Everitt H O, Yang W T, Kim J, Liu J 2012 Nano Res. 5 20Google Scholar

    [29]

    Lin Q B, Wu S Q, Zhu Z Z 2016 AIP Adv. 6 095219Google Scholar

    [30]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024 J. Appl. Phys. 135 054101Google Scholar

    [35]

    Goh E S, Mah J W, Yoon T L 2017 Comput. Mater. Sci. 138 111Google Scholar

    [36]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829Google Scholar

    [37]

    Hu J Q, Xu L H, Wu S Q, Zhu Z Z 2019 Curr. Appl. Phys. 19 1222Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J Q, Shi X H, Wu S Q, Ho K M, Zhu Z Z 2019 Nanoscale Res. Lett. 14 288Google Scholar

    [40]

    Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024 Eur. Phys. J. Plus 139 66Google Scholar

    [41]

    Ould Ne M L, El Hachimi A G, Boujnah M, Benyoussef A, El Kenz A 2018 Optik 158 693Google Scholar

  • 图 1  4种纳米线结构 (a) 六边形氧化锌纳米线结构; (b) 六角星形氧化锌纳米线结构; (c) 12个硫掺杂的六角星形纳米线结构(ZnSO); (d) 24个硫掺杂的六角星形纳米线结构(ZnSSO); 其中红球代表O原子, 灰球代表Zn原子, 黄球代表S原子

    Figure 1.  Four nanowire configurations: (a) Hexagonal ZnO; (b) star-shaped ZnO; (c) 12 S-doped star ZnO (ZnSO); (d) 24 S-doped star ZnO (ZnSSO). Atomic colors: O (red); Zn (gray); S (yellow).

    图 2  各高对称点Γ, Z, R对应的布里渊区位置, 轴向方向为(0001)

    Figure 2.  Locations within the Brillouin zone corresponding to the high-symmetry points Γ, Z, and R, with the axial direction along (0001).

    图 3  能带结构 (a) 六角星形氧化锌纳米线能带结构; (b) 12个硫掺杂的六角星形氧化锌纳米线结构(ZnSO); (c) 24个硫掺杂的六角星形氧化锌纳米线结构(ZnSSO); 高对称点Γ, Z, R对应的布里渊区位置分别为Γ (0, 0, 0), Z (0, 0, 0.5), R (0.5, 0.5, 0.5); s纳米线的轴向方向为(0001)

    Figure 3.  Band structures: (a) Star-shaped ZnO nanowire; (b) 12 S-doped star-shaped nanowire (ZnSO); (c) 24 S-doped star-shaped nanowire (ZnSSO). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 4  GGA+U计算的能带结构 (a) 六角星形氧化锌纳米线能带结构; (b) 12个硫掺杂的六角星形氧化锌纳米线结构(ZnSO); (c) 24个硫掺杂的六角星形氧化锌纳米线结构(ZnSSO); 高对称点Γ, Z, R对应的布里渊区位置分别为Γ (0, 0, 0), Z (0, 0, 0.5), R (0.5, 0.5, 0.5); 纳米线的轴向方向为(0001)

    Figure 4.  Band structure of GGA+U calculations: (a) Star-shaped ZnO nanowire; (b) 12 S-doped star-shaped nanowire (ZnSO); (c) 24 S-doped star-shaped nanowire (ZnSSO). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 5  六角星形ZnO纳米线的原子轨道投影能带结构, 其中(a)为总的, (b)为O原子, (c)为Zn原子; 六角星形ZnSO纳米线的原子轨道投影能带结构, 其中(d)为总的, (e)为O原子, (f)为Zn原子, (g)为S原子; 六角星形ZnSSO纳米线的原子轨道投影能带结构, 其中(h)为总的, (i)为O原子, (j)为Zn原子, (k)为S原子. 高对称点Γ, Z, R对应的布里渊区位置分别为 Γ (0, 0, 0), Z (0, 0, 0.5), R (0.5, 0.5, 0.5); 纳米线的轴向方向为(0001)

    Figure 5.  Orbital-projected band structures of hexagonal star-shaped: (a)–(c) ZnO nanowire (total, O, Zn); (d)–(g) ZnSO nanowire (total, O, Zn, S); (h)–(k) ZnSSO nanowire (total, O, Zn, S). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 6  介电函数(实部和虚部) (a) 六边形氧化锌纳米线; (b) 六角星形氧化锌纳米线; (c) 12个硫掺杂的六角星形纳米线(ZnSO); (d) 24个硫掺杂的六角星形纳米线(ZnSSO)

    Figure 6.  Dielectric functions (real and imaginary parts): (a) Hexagonal ZnO nanowire; (b) hexagonal star-shaped ZnO nanowire; (c) 12 S-doped star-shaped nanowire (ZnSO); (d) 24 S-doped star-shaped nanowire (ZnSSO).

    图 7  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的折射率随入射光能量的变化

    Figure 7.  Refractive indices of hexagonal ZnO nanowire, hexagonal star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO) as a function of incident photon energy.

    图 8  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的消光系数随入射光能量的变化

    Figure 8.  Extinction coefficients of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO) as a function of incident photon energy.

    图 9  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的吸收系数

    Figure 9.  Absorption coefficients of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO).

    图 10  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的反射率

    Figure 10.  Reflectance spectra of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO).

    表 1  星形氧化锌纳米线(ZnO Star)、12个硫掺杂的六角星形纳米线(ZnSO)以及24个硫掺杂的六角星形纳米线结构(ZnSSO)的结构参数

    Table 1.  Structural parameters for hexagonal star-shaped ZnO, 12 S-doped star ZnO (ZnSO) and 24 S-doped star ZnO (ZnSSO).

    Structural parameters ZnO Star ZnSO ZnSSO
    Lateral dimensions
    a, b
    33.0×33.0 33.0×33.0 30.0×30.0
    Axial dimension c 5.2065 5.2065 5.2065
    Unit cell volume/ų 5673.5 5673.5 4685.9
    Number of O atoms 102 90 78
    Number of S atoms 0 12 24
    Number of Zn atoms 102 102 102
    DownLoad: CSV
  • [1]

    Djurišić Dr A B, Leung Y H 2006 Small 2 944Google Scholar

    [2]

    Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, Liu J 2006 Nano Lett. 6 1126Google Scholar

    [3]

    Foreman J V, Everitt H O, Yang J, Liu J J 2007 Appl. Phys. Lett. 91 011902Google Scholar

    [4]

    Özgür Ü, Alivov Y I, Liu C L, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [5]

    Triboulet R, Perrière J 2003 Prog. Cryst. Growth Charact. Mater. 47 65Google Scholar

    [6]

    Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D 2005 Nano Lett. 5 1231Google Scholar

    [7]

    Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001 Adv. Mater. 13 113Google Scholar

    [8]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897Google Scholar

    [9]

    Li S Y, Lin P, Lee C Y, Tseng T Y 2004 J. Appl. Phys. 95 3711Google Scholar

    [10]

    Liu C H, Zapien J A, Yao Y, Meng X M, Lee C S, Fan S S, Lifshitz Y, Lee S T 2003 Adv. Mater. 15 838Google Scholar

    [11]

    Yao B D, Chan Y F, Wang N 2002 Appl. Phys. Lett. 81 757Google Scholar

    [12]

    Guo M, Diao P, Cai S M 2005 J. Solid State Chem. 178 1864Google Scholar

    [13]

    Hartanto A B, Ning X, Nakata Y, Okada T 2004 Appl. Phys. A: Mater. Sci. Process. 78 299Google Scholar

    [14]

    Liu B, Zeng H C 2003 J. Am. Chem. Soc. 125 4430Google Scholar

    [15]

    Park W, Jun Y, Jung S, Yi G C 2003 Appl. Phys. Lett. 82 964Google Scholar

    [16]

    Yu W D, Li X M, Gao X D 2004 Appl. Phys. Lett. 84 2658Google Scholar

    [17]

    Delin A, Ravindran P, Eriksson O, Wills J M 1998 Int. J. Quantum Chem. 69 349Google Scholar

    [18]

    Ravindran P, Delin A, Johansson B, Eriksson O, Wills J M 1999 Phys. Rev. B 59 1776Google Scholar

    [19]

    Lucarelli A, Lupi S, Calvani P, Maselli P, De Marzi G, Roy P, Saini N L, Bianconi A, Ito T, Oka K 2002 Phys. Rev. B 65 054551Google Scholar

    [20]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvåg H, Svensson B G 2007 Phys. Rev. B 75 155104Google Scholar

    [21]

    Kong F J, Jiang G 2009 Physica B 404 2340Google Scholar

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [23]

    Schmidt-Mende L, Macmanus-Driscoll J L 2007 Mater. Today 10 40Google Scholar

    [24]

    Choi A, Kim K, Jung H I, Lee S Y 2010 Sens. Actuat. B 148 577Google Scholar

    [25]

    Shi L H, Chen J, Zhang G, Li B W 2012 Phys. Lett. A 376 978Google Scholar

    [26]

    Zhao Q D, Xie T F, Peng L L, Lin Y H, Wang P, Peng L, Wang D J 2007 J. Phys. Chem. C 111 17136Google Scholar

    [27]

    Mousavi S H, Haratizadeh H, Kitai A H 2011 Mater. Lett. 65 2470Google Scholar

    [28]

    Cho J, Lin Q B, Yang S, Simmons J G, Cheng Y W, Lin E, Yang J Q, Foreman J V, Everitt H O, Yang W T, Kim J, Liu J 2012 Nano Res. 5 20Google Scholar

    [29]

    Lin Q B, Wu S Q, Zhu Z Z 2016 AIP Adv. 6 095219Google Scholar

    [30]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024 J. Appl. Phys. 135 054101Google Scholar

    [35]

    Goh E S, Mah J W, Yoon T L 2017 Comput. Mater. Sci. 138 111Google Scholar

    [36]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829Google Scholar

    [37]

    Hu J Q, Xu L H, Wu S Q, Zhu Z Z 2019 Curr. Appl. Phys. 19 1222Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J Q, Shi X H, Wu S Q, Ho K M, Zhu Z Z 2019 Nanoscale Res. Lett. 14 288Google Scholar

    [40]

    Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024 Eur. Phys. J. Plus 139 66Google Scholar

    [41]

    Ould Ne M L, El Hachimi A G, Boujnah M, Benyoussef A, El Kenz A 2018 Optik 158 693Google Scholar

  • [1] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [2] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun. First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN. Acta Physica Sinica, 2018, 67(8): 087501. doi: 10.7498/aps.67.20172504
    [4] Tang Shi-Hui, Cao Xiu-Xia, He Lin, Zhu Wen-Jun. Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3. Acta Physica Sinica, 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [5] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [7] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [8] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [9] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [10] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [12] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [13] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [14] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [15] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [16] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [18] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  973
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2025
  • Accepted Date:  06 July 2025
  • Available Online:  24 July 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回