Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN

Xu Da-Qing Zhao Zi-Han Li Pei-Xian Wang Chao Zhang Yan Liu Shu-Lin Tong Jun

Citation:

First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN

Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • InN,as an important Ⅲ-nitride,has high electron mobility and low electron effective mass,so it has a wide range of applications in optoelectronic devices,high-frequency high-speed devices,and high-power microwave devices.The Ⅲ-nitrides based dilute magnetic semiconductors (DMSs) can be developed by leveraging the existing fabrication technology for Ⅲ-nitride semiconductor electronic devices,leading to novel semiconductor spintronic devices with a multiplicity of electrical,optical,and magnetic properties.It has been reported that room temperature ferromagnetism exists in InN nanostructures and thin films as well as InN-based DMSs systems.However,the origin mechanism and the formation mechanism of ferromagnetism in these materials have not been fully understood.In Ⅲ-V compound semiconductors,the transition element Mn ions exist mostly in the form of Mn2+ valences while it is also possible for them to emerge in Mn3+ valence states under certain conditions.Although Mn2+ and Mn3+ valance states affect the physical properties of the doped semiconductor differently,there lacks in-depth understanding of such different effects resulting from Mn doping in InN. Under the framework of the density functional theory,in this paper we adopt the generalized gradient approximation (GGA+U) plane wave pseudopotential method to calculate the electronic structure,energy and optical properties of undoped InN and InN doped with three different orderly placeholders of Mn2+ or Mn3+ after geometry optimization.The conducted analysis shows that the system exhibits lower total and formation energies,and improved stability after Mn doping.Manganese doping introduces a spin-polarized impurity band near the Fermi level,and as a result the doped material system has obvious spin polarization.Doping with different valences of Mn ions lead to varying effects on the electronic structure and magnetic property of the material system.The analyses of electronic structure and magnetic property show that both the p-d exchange mechanism and the double exchange mechanism play important roles in the magnetic exchange of the doped system,and Mn3+ doping helps to push the Curie temperature above the room temperature.Comparing with the pure InN,the value of the static dielectric function of the doped system increases significantly.The present analysis concludes that the imaginary part of the dielectric function and the absorption spectrum of the doped system presents strong new peaks in the low-energy region due to the electronic transition associated with the spin-polarized impurity band near the Fermi level. Broadly,this work sheds new light on the microscopic mechanism for the magnetic ordering of Ⅲ-nitride based DMSs,and lays a foundation for developing the novel Ⅲ-nitride based DMSs and devices.
      Corresponding author: Xu Da-Qing, xustxdq@163.com
    • Funds: Project supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 11JK0912), the Scientific Research Foundation of Xi'an University of Science and Technology, China (Grant No. 201611), and the National Key Research and Development Program of China (Grant No. 2016YFB0400802).
    [1]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [2]

    Roul B, Kumar M, Bhat T N, Rajpalke M K, Krupanidhi S B, Kumar N, Sundaresan A 2014 J. Nanosci. Nanotechnol. 4 1

    [3]

    Meng X Q, Chen Z H, Chen Z, Wu F M, Li S S, Li J B, Wu J Q, Wei S H 2013 Appl. Phys. Lett. 103 253102

    [4]

    Ren M, Li M, Zhang C, Yuan M, Li P, Li F, Ji W, Liu X 2015 Physica E 67 1

    [5]

    Caliskan S, Hazar F 2015 Superlattices Microstruct. 84 170

    [6]

    Zhang K C, Li Y F, Liu Y, Zhu Y 2015 J. Alloys Compd. 625 101

    [7]

    Fan S W, Huang X N, Yao K L 2017 J. Appl. Phys. 121 073905

    [8]

    Chang P H, Chen H C, Lin J W, Lai M X, Hung S Y, Lee M J 2016 Thin Solid Films 618 184

    [9]

    Alsaad A, Qattan I A 2014 Physica B 432 77

    [10]

    Chen P P, Makino H, Yao T 2004 Physica E 21 983

    [11]

    Wolos A, Palczewska M, Zajac M, Gosk J, Kaminska M, Twardowski A, Bockowski M, Grzegory I, Porowski S 2004 Phys. Rev. B 69 115210

    [12]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M 2003 Phys. Rev. B 67 165215

    [13]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M, Grgens L, Philipp J B, Ambacher O 2003 J. Appl. Phys. 93 9697

    [14]

    Dalpian G M, Wei S H 2005 J. Appl. Phys. 98 1019

    [15]

    Stefanowicz W, Sztenkiel D, Faina B, et al. 2010 Phys. Rev. B 81 1601

    [16]

    Zakrzewski T, Boguslawski P 2016 J. Alloys Compd. 664 565

    [17]

    Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York:John Wiley Sons, Inc) pp49-66

    [18]

    Alsaad A, Qattan I A 2011 Physica B 406 4233

    [19]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Katayama-Yoshida H, Sato K 2003 J. Phys. Chem. Solids 64 1447

    [22]

    Monemar B, Paskova P P, Kasic A 2005 Superlattices Microsturct. 38 38

    [23]

    Briot O, Maleyre B, Ruffenach S, Gil B, Pinquier C, Demangeot F, Frandon J 2004 J. Cryst. Growth 269 22

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Sato K, Katayama-Yoshida H 2012 J. Non-Cryst. Solids 358 2377

    [26]

    Xu D Q, Li P X, Zhang Y M, Lou Y L, Li Y C 2016 Thin Solid Films 616 573

    [27]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [28]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

    [29]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1

    [30]

    Graf T, Gjukic M, Brandt M S, Stutzmann M, Ambacher O 2002 Appl. Phys. Lett. 81 5159

    [31]

    Titov A, Biquard X, Halley D, Kuroda S, Bellet-Amalric E, Mariette H, Cibert J, Merad A E, Merad G, Kanoun M B, Kulatov E, Uspenskii Y A 2005 Phys. Rev. B 72 115209

  • [1]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [2]

    Roul B, Kumar M, Bhat T N, Rajpalke M K, Krupanidhi S B, Kumar N, Sundaresan A 2014 J. Nanosci. Nanotechnol. 4 1

    [3]

    Meng X Q, Chen Z H, Chen Z, Wu F M, Li S S, Li J B, Wu J Q, Wei S H 2013 Appl. Phys. Lett. 103 253102

    [4]

    Ren M, Li M, Zhang C, Yuan M, Li P, Li F, Ji W, Liu X 2015 Physica E 67 1

    [5]

    Caliskan S, Hazar F 2015 Superlattices Microstruct. 84 170

    [6]

    Zhang K C, Li Y F, Liu Y, Zhu Y 2015 J. Alloys Compd. 625 101

    [7]

    Fan S W, Huang X N, Yao K L 2017 J. Appl. Phys. 121 073905

    [8]

    Chang P H, Chen H C, Lin J W, Lai M X, Hung S Y, Lee M J 2016 Thin Solid Films 618 184

    [9]

    Alsaad A, Qattan I A 2014 Physica B 432 77

    [10]

    Chen P P, Makino H, Yao T 2004 Physica E 21 983

    [11]

    Wolos A, Palczewska M, Zajac M, Gosk J, Kaminska M, Twardowski A, Bockowski M, Grzegory I, Porowski S 2004 Phys. Rev. B 69 115210

    [12]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M 2003 Phys. Rev. B 67 165215

    [13]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M, Grgens L, Philipp J B, Ambacher O 2003 J. Appl. Phys. 93 9697

    [14]

    Dalpian G M, Wei S H 2005 J. Appl. Phys. 98 1019

    [15]

    Stefanowicz W, Sztenkiel D, Faina B, et al. 2010 Phys. Rev. B 81 1601

    [16]

    Zakrzewski T, Boguslawski P 2016 J. Alloys Compd. 664 565

    [17]

    Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York:John Wiley Sons, Inc) pp49-66

    [18]

    Alsaad A, Qattan I A 2011 Physica B 406 4233

    [19]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Katayama-Yoshida H, Sato K 2003 J. Phys. Chem. Solids 64 1447

    [22]

    Monemar B, Paskova P P, Kasic A 2005 Superlattices Microsturct. 38 38

    [23]

    Briot O, Maleyre B, Ruffenach S, Gil B, Pinquier C, Demangeot F, Frandon J 2004 J. Cryst. Growth 269 22

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Sato K, Katayama-Yoshida H 2012 J. Non-Cryst. Solids 358 2377

    [26]

    Xu D Q, Li P X, Zhang Y M, Lou Y L, Li Y C 2016 Thin Solid Films 616 573

    [27]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [28]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

    [29]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1

    [30]

    Graf T, Gjukic M, Brandt M S, Stutzmann M, Ambacher O 2002 Appl. Phys. Lett. 81 5159

    [31]

    Titov A, Biquard X, Halley D, Kuroda S, Bellet-Amalric E, Mariette H, Cibert J, Merad A E, Merad G, Kanoun M B, Kulatov E, Uspenskii Y A 2005 Phys. Rev. B 72 115209

  • [1] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [3] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [5] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [8] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [9] Liu Wei-Jie, Sun Zheng-Hao, Huang Yu-Xin, Leng Jing, Cui Hai-Ning. Electronic structures and optical properties of rare earth element (Yb) with different valences doped in ZnO. Acta Physica Sinica, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [10] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] Zhang Xiao-Chao, Zhao Li-Jun, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Electronic structures and optical properties of transition metals (Fe, Co, Ni, Zn) doped rutile TiO2. Acta Physica Sinica, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [12] Li Chun-Xia, Dang Sui-Hu. Doped with Ag and Zn effects on electronic structure and optical properties of CdS. Acta Physica Sinica, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [13] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  7347
  • PDF Downloads:  315
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2017
  • Accepted Date:  19 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回