Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical properties of novel electronic states related to flat band in twisted two-dimensional quantum materials

Wang Zhong-Rui Jiang Yu-Hang

Citation:

Physical properties of novel electronic states related to flat band in twisted two-dimensional quantum materials

Wang Zhong-Rui, Jiang Yu-Hang
PDF
HTML
Get Citation
  • Two-dimensional (2D) materials can exhibit novel quantum phenomena and be easily tuned by the external environment, which has made them one of the most attractive topics in condensed matter physics during the recent decades. The moiré superlattice induced by varied stacking geometry can further renormalize the material band structure, resulting in the electronic flat bands. With the help of external fields, one can tune the electron-electron correlated interaction in these flat bands, even control the overall physical properties. In this paper we review the recent researches of novel properties in twisted 2D materials (graphene and transition metal dichalcogenide heterostructure), involving strong correlation effect, unconventional superconductivity, quantum anomalous Hall effect, topological phase, and electronic crystals. We also discuss some open questions and give further prospects in this field.
      Corresponding author: Jiang Yu-Hang, yuhangjiang@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074377) and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [3]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [4]

    Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, Andrei E Y 2010 Nat. Phys. 6 109Google Scholar

    [5]

    Yin L J, Qiao J B, Zuo W J, Li W T, He L 2015 Phys. Rev. B 92 081406Google Scholar

    [6]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [7]

    Jiang Y H, Lai X Y, Watanabe K, Taniguchi T, Haule K, Mao J H, Andrei E Y 2019 Nature 573 91Google Scholar

    [8]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [9]

    Xie Y L, Lian B, Jäck B, Liu X M, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [10]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [11]

    Hao Z Y, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi Danial H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [12]

    Jiao L, Howard S, Ran S, Wang Z Y, Rodriguez J O, Sigrist M, Wang Z Q, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [13]

    Falson J, Xu Y, Liao M H, Zang Y Y, Zhu K, Wang C, Zhang Z, Liu H C, Duan W H, He K, Liu H W, Smet J H, Zhang D, Xue Q K 2020 Science 367 1454Google Scholar

    [14]

    Choi Y J, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y R, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [15]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [16]

    Chen Q Y, Luo X B, Xie D H, Li M L, Ji X Y, Zhou R, Huang Y B, Zhang W, Feng W, Zhang Y, Huang L, Hao Q Q, Liu Q, Zhu X G, Liu Y, Zhang P, Lai X C, Si Q, Tan S Y 2019 Phys. Rev. Lett. 123 106402Google Scholar

    [17]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [18]

    Li H Y, Li S W, Regan E C, Wang D Q, Zhao W Y, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [19]

    Smoleński T, Dolgirev P E, Kuhlenkamp C, Popert A, Shimazaki Y, Back P, Lu X, Kroner M, Watanabe K, Taniguchi T, Esterlis I, Demler E, Imamoğlu A 2021 Nature 595 53Google Scholar

    [20]

    Zhou Y, Sung J, Brutschea E, Esterlis I, Wang Y, Scuri G, Gelly R J, Heo H, Taniguchi T, Watanabe K, Zaránd G, Lukin M D, Kim P, Demler E, Park H 2021 Nature 595 48Google Scholar

    [21]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [22]

    Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [23]

    Andrei E Y, Li G, Du X 2012 Rep. Prog. Phys. 75 056501Google Scholar

    [24]

    Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [25]

    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [26]

    Cong C X, Yu T 2014 Nat. Commun. 5 4709Google Scholar

    [27]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [28]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [29]

    Chen G R, Jiang L L, Wu S, Lyu B S, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [30]

    Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B S, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215Google Scholar

    [31]

    Mao J H, Milovanović S P, Anđelković M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y H, Andrei E Y 2020 Nature 584 215Google Scholar

    [32]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [33]

    Stepanov P, Das I, Lu X B, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [34]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y J, Kim H, Lin Z, Wilson I Z, Xu X D, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [35]

    Saito Y, Ge J Y, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [36]

    Berdyugin A I, Xu S G, Pellegrino F M D, Kumar R K, Principi A, Torre I, Shalom M B, Taniguchi T, Watanabe K, Grigorieva I V, Polini M, Geim A K, Bandurin D A 2019 Science 364 162Google Scholar

    [37]

    Gallagher P, Yang C S, Lyu T, Tian F L, Kou R, Zhang H, Watanabe K, Taniguchi T, Wang F 2019 Science 364 158Google Scholar

    [38]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002Google Scholar

    [39]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98 241412Google Scholar

    [40]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [41]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [42]

    Zhou H X, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [43]

    Zhou H X, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [44]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [45]

    Liu J P, Dai X 2021 Phys. Rev. B 103 035427Google Scholar

    [46]

    Pixley J H, Andrei E Y 2019 Science 365 543Google Scholar

    [47]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [48]

    Wu S, Zhang Z Y, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [49]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [50]

    Gao X G, Li X K, Xin W, Chen X D, Liu Z B, Tian J G 2020 Nanophotonics 9 1717Google Scholar

    [51]

    Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [52]

    Li H Y, Li S W, Naik M H, Xie J X, Li X Y, Wang J Y, Regan E, Wang D Q, Zhao W Y, Zhao S H, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [53]

    Li H Y, Li S W, Naik M H, Xie J X, Li X Y, Regan E, Wang D Q, Zhao W Y, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [54]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [55]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [56]

    Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotechnol. 12 757Google Scholar

    [57]

    Wu Z F, Zhou B T, Cai X B, Cheung P, Liu G B, Huang M Z, Lin J X Z, Han T Y, An L H, Wang Y W, Xu S G, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [58]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [59]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [60]

    Li E, Hu J X, Feng X M, Zhou Z S, An L H, Law K T, Wang N, Lin N 2021 Nat. Commun. 12 5601Google Scholar

    [61]

    Wu F C, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [62]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087Google Scholar

    [63]

    Wu F C, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [64]

    Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [65]

    Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [66]

    Regan E C, Wang D Q, Jin C H, Bakti Utama M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [67]

    Huang X, Wang T M, Miao S N, Wang C, Li Z P, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [68]

    Jin C H, Tao Z, Li T X, Xu Y, Tang Y H, Zhu J C, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [69]

    Chen J L, Lin X, Chen M Y, Low T, Chen H S, Dai S Y 2021 Appl. Phys. Lett. 119 240501Google Scholar

    [70]

    Wu Z L, Liu Y R, Hill E H, Zheng Y B 2018 Nanoscale 10 18096Google Scholar

    [71]

    Zhang X Y, Zhong Y H, Low T, Chen H S, Lin X 2021 Phys. Rev. B 103 195405Google Scholar

    [72]

    Mao X R, Shao Z K, Luan H Y, Wang S L, Ma R M 2021 Nat. Nanotechnol. 16 1099Google Scholar

    [73]

    Jin C H, Regan E C, Yan A M, Iqbal Bakti Utama M, Wang D Q, Zhao S H, Qin Y, Yang S J, Zheng Z R, Shi S Y, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [74]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [75]

    González J, Stauber T 2020 Phys. Rev. Lett. 124 186801Google Scholar

  • 图 1  (a) 单层石墨烯低能区线性能带结构[21]; (b) 转角石墨烯形成的莫尔超晶格[21]; (c) STM观测TBG的示意图与均匀的莫尔斑点[21]; (d) 转角石墨烯电子能带结构[3]; (e) 原位解理-转移制备法[27]; (f) 第一布里渊区中的平带体系[2]

    Figure 1.  (a) Low-energy band structure of monolayer graphene[21]; (b) moiré pattern formed by twisted graphene[21]; (c) schematics of STM measurement of TBG sample, topography of which shows a uniform moiré pattern[21]; (d) band structure of twisted graphene[3]; (e) tear-and-stack technique[27]; (f) flat band structure in the first Brillouin zone[2].

    图 2  转角石墨烯体系中平带相关的关联绝缘态 (a) T = 0.3 K时, 魔角石墨烯电导率随载流子浓度的变化[3]; (b) 从0 T(黑色曲线)到480 mT(红色曲线)不同垂直磁场下纵向电阻随载流子浓度的变化[25]; (c) 由hBN封装的双栅极ABC-TLG侧向示意图[29]; (d) ABC-TLG电阻随VtVb的变化(颜色从亮到暗代表电阻从100 kΩ到10 Ω, VtVb分别代表顶部栅压与底部栅压)[29]; (e) 魔角石墨烯中电荷条纹有序相[7]; (f) T = 0.3 K, θ = 1.08°时, TMBG的电阻率随电位移场D与载流子浓度的变化[17]; (g) D < 0时, ν = 1, 2, 3处的关联态性质[17]

    Figure 2.  Correlated insulating state of flat band in twisted graphene system: (a) measured conductance of magic-angle graphene as a function of carrier density at T = 0.3 K[3]; (b) longitudinal resistance against carrier density at different perpendicular magnetic fields from 0 T (black trace) to 480 mT (red trace) [25]; (c) schematic cross-sectional view of the dual-gated ABC-TLG device encapsulated by hBN[29]; (d) ABC-TLG resistance as a function of Vt and Vb (The colour scale is from 10 Ω (dark) to 100 kΩ (bright) in a log scale, Vt and Vb refer to the top and bottom gate voltage)[29]; (e) stripe charge ordered phase in magic-angle graphene[7]; (f) resistivity of TMBG plotted against electric displacement field D and carrier density under the condition of T = 0.3 K and θ = 1.08°[17]; (g) properties of the correlated states at ν= 1, 2, 3 for D < 0[17].

    图 3  魔角石墨烯非常规超导态 (a), (b) 电阻与温度和载流子浓度的关系, 显示出魔角石墨烯在(a) 半填充[2]和(b) 整数填充[25]绝缘态附近的超导圆顶; (c) 三个屏蔽调控的魔角石墨烯电阻与温度和填充因子关系, 在整数填充附近呈现关联绝缘态消失的超导特征[33]; 利用Dynes方程对(d) s波超导体和(e)节点超导体的准粒子态密度模型进行实验谱学上的模拟[40]; (f) 过剩电流、超导能隙与温度的关系[40]; (g) 相对霍尔密度 $ \left|{n}_{\mathrm{H}}-\nu \right| $随载流子浓度和电位移场的变化[11]

    Figure 3.  Unconventional superconductivity of magic-angle graphene: (a), (b) Resistance as a function of temperature and carrier density, where shows superconductivity domes around (a) half-filling[2] and (b) integer-filling[25] correlated states of magic-angle graphene respectively; (c) colour plot of resistivity versus moiré band filling factor ν and temperature for three screening-controlled magic-angle TBG devices, which shows correlated insulators are completely absent, while superconductivity persists[33]; Dynes-function fits to the experimental tunneling spectrum using the model quasiparticle density of states for (d) s-wave superconductor and (e) nodal superconductor[40]; (f) excess current and the superconducting energy gap versus temperature[40]; (g) subtracted Hall density $ \left|{n}_{\mathrm{H}}-\nu \right| $ as a function of carrier density and electric displacement field[11].

    图 4  转角石墨烯的量子反常霍尔效应 (a) 30 mK下, 3/4填充魔角石墨烯霍尔电阻随磁场的变化; (b) θ = 1.20°± 0.01°时, 不同温度下3/4填充魔角石墨烯霍尔电阻随磁场的变化[44]; (c) 魔角石墨烯铁磁性拓扑绝缘性质示意图[46]; (d) 强关联Chern绝缘体对磁场的量子化响应[15]; (e) T = 0.3 K, n/n0 = 3.5时, 纵向电阻R*与平面内磁场B的关系[48]; (f) Chern绝缘体示意图, 红线对应于(t, s) = (–2, –3/2)和(–3, –1/2)的对称破缺Chern绝缘体(s是布洛赫带填充指数; t是与带隙相关的总Chern数)[49]

    Figure 4.  Anomalous Hall Effect of magic-angle graphene: (a) Hall resistance of twisted graphene tested as a function of magnetic fields at 30 mK near three-quarters filling; (b) Hall resistance of twisted graphene tested as a function of magnetic fields at different temperatures near three-quarters filling at θ = 1.20°±0.01°[44]; (c) schematic of the ferromagnetic topological insulator property of magic-angle graphene[46]; (d) quantized magnetic-field response of strongly correlated Chern insulating phases[15]; (e) in-plane field B dependence of longitudinal R*, at n/n0= 3.5, at T = 0.3 K[48]; (f) schematic of Chern insulator states, with red lines corresponding to SBCIs with (t,  s) = (–2,  –3/2) and (–3,  –1/2)( s is the Bloch band filling index; t is the total Chern number associated with a given gap) [49].

    图 5  (a)—(c) 不同转角双层WSe2的STS分析[60]; (d)—(f) WSe2/WS2异质结莫尔超晶格重构[52]

    Figure 5.  (a)–(c) STS of twisted bilayer-WSe2 with different twisted angles[60]; (d)–(f) moiré superlattice reconstruction of WSe2/WS2 heterostructure[52].

    图 6  (a) 转角WSe2异质结示意图与莫尔超晶格平带结构[64]; (b) 电阻随温度和载流子浓度变化的相图(D = 0.45 V/nm, θ = 5.1°, 顶部栅压Vtg = –12.25 V)[64]; (c), (d) 转角与电位移场共同调制的关联绝缘态[64]; (e) WS2/WSe2异质结器件结构示意图[67]; (f) 2.8—140 K时的关联绝缘态以及晶格填充情况的蒙特卡罗模拟[67]

    Figure 6.  (a) Schematic of the twisted bilayer-WSe2 sample and the moiré superlattice flat bands structure [64]; (b) resistance color plotted against temperature and carrier density (D = 0.45 V/nm, θ = 5.1°, top gate Vtg = –12.25 V)[64]; (c), (d) angle and electric displacement field dependence of the correlated insulating states[64]; (e) schematic of the WS2/WSe2 device structure [67]; (f) correlated insulating states at a temperature range from 2.8 K to 140 K and spatial filling patterns gained from Monte Carlo simulation[67]

    图 7  4%晶格错配WSe2/WS2 莫尔超晶格 (a) 光学各向异性测量示意图[68]; (b) 1/2填充时电子条纹的结构域图[68]; (c) WSe2/WS2 异质结示意图及广义Wigner晶格[18]; (d) 双层MoSe2中Wigner晶体的量子与温度相变[20]; (e) 不同栅压下Se/W 莫尔位点的dI/dV谱, 显示出 STM针尖在莫尔周期里的局部放电现象(蓝色箭头表示充放电时表面色散特征)[53]

    Figure 7.  4% mismatch WSe2/WS2 moiré superlattice: (a) Schematics of optical anisotropy measurement[68]; (b) electronic stripe domain patterns at half filling[68]; (c) schematic of correlated states and generalized Wigner crystal states in a WSe2/WS2 moiré superlattice[18]; (d) MoSe2 bilayer Wigner crystals’ quantum and thermal phase transitions[20]; (e) gate-dependent dI/dV spectra measured at the Se/W moiré sites, showing local discharging of moiré site induced by the STM tip (The blue arrows indicate surface dispersion characteristics during charge and discharge)[53].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [3]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [4]

    Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, Andrei E Y 2010 Nat. Phys. 6 109Google Scholar

    [5]

    Yin L J, Qiao J B, Zuo W J, Li W T, He L 2015 Phys. Rev. B 92 081406Google Scholar

    [6]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [7]

    Jiang Y H, Lai X Y, Watanabe K, Taniguchi T, Haule K, Mao J H, Andrei E Y 2019 Nature 573 91Google Scholar

    [8]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [9]

    Xie Y L, Lian B, Jäck B, Liu X M, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [10]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [11]

    Hao Z Y, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi Danial H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [12]

    Jiao L, Howard S, Ran S, Wang Z Y, Rodriguez J O, Sigrist M, Wang Z Q, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [13]

    Falson J, Xu Y, Liao M H, Zang Y Y, Zhu K, Wang C, Zhang Z, Liu H C, Duan W H, He K, Liu H W, Smet J H, Zhang D, Xue Q K 2020 Science 367 1454Google Scholar

    [14]

    Choi Y J, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y R, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [15]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [16]

    Chen Q Y, Luo X B, Xie D H, Li M L, Ji X Y, Zhou R, Huang Y B, Zhang W, Feng W, Zhang Y, Huang L, Hao Q Q, Liu Q, Zhu X G, Liu Y, Zhang P, Lai X C, Si Q, Tan S Y 2019 Phys. Rev. Lett. 123 106402Google Scholar

    [17]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [18]

    Li H Y, Li S W, Regan E C, Wang D Q, Zhao W Y, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [19]

    Smoleński T, Dolgirev P E, Kuhlenkamp C, Popert A, Shimazaki Y, Back P, Lu X, Kroner M, Watanabe K, Taniguchi T, Esterlis I, Demler E, Imamoğlu A 2021 Nature 595 53Google Scholar

    [20]

    Zhou Y, Sung J, Brutschea E, Esterlis I, Wang Y, Scuri G, Gelly R J, Heo H, Taniguchi T, Watanabe K, Zaránd G, Lukin M D, Kim P, Demler E, Park H 2021 Nature 595 48Google Scholar

    [21]

    Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265Google Scholar

    [22]

    Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [23]

    Andrei E Y, Li G, Du X 2012 Rep. Prog. Phys. 75 056501Google Scholar

    [24]

    Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F, Veuillen J Y 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [25]

    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [26]

    Cong C X, Yu T 2014 Nat. Commun. 5 4709Google Scholar

    [27]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [28]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [29]

    Chen G R, Jiang L L, Wu S, Lyu B S, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [30]

    Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B S, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215Google Scholar

    [31]

    Mao J H, Milovanović S P, Anđelković M, Lai X Y, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y H, Andrei E Y 2020 Nature 584 215Google Scholar

    [32]

    Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, Zhang G Y 2020 Nat. Phys. 16 520Google Scholar

    [33]

    Stepanov P, Das I, Lu X B, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [34]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y J, Kim H, Lin Z, Wilson I Z, Xu X D, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [35]

    Saito Y, Ge J Y, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [36]

    Berdyugin A I, Xu S G, Pellegrino F M D, Kumar R K, Principi A, Torre I, Shalom M B, Taniguchi T, Watanabe K, Grigorieva I V, Polini M, Geim A K, Bandurin D A 2019 Science 364 162Google Scholar

    [37]

    Gallagher P, Yang C S, Lyu T, Tian F L, Kou R, Zhang H, Watanabe K, Taniguchi T, Wang F 2019 Science 364 158Google Scholar

    [38]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002Google Scholar

    [39]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98 241412Google Scholar

    [40]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [41]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [42]

    Zhou H X, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [43]

    Zhou H X, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [44]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [45]

    Liu J P, Dai X 2021 Phys. Rev. B 103 035427Google Scholar

    [46]

    Pixley J H, Andrei E Y 2019 Science 365 543Google Scholar

    [47]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [48]

    Wu S, Zhang Z Y, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [49]

    Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [50]

    Gao X G, Li X K, Xin W, Chen X D, Liu Z B, Tian J G 2020 Nanophotonics 9 1717Google Scholar

    [51]

    Zhang Z M, Wang Y M, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [52]

    Li H Y, Li S W, Naik M H, Xie J X, Li X Y, Wang J Y, Regan E, Wang D Q, Zhao W Y, Zhao S H, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [53]

    Li H Y, Li S W, Naik M H, Xie J X, Li X Y, Regan E, Wang D Q, Zhao W Y, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [54]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [55]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [56]

    Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotechnol. 12 757Google Scholar

    [57]

    Wu Z F, Zhou B T, Cai X B, Cheung P, Liu G B, Huang M Z, Lin J X Z, Han T Y, An L H, Wang Y W, Xu S G, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [58]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [59]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [60]

    Li E, Hu J X, Feng X M, Zhou Z S, An L H, Law K T, Wang N, Lin N 2021 Nat. Commun. 12 5601Google Scholar

    [61]

    Wu F C, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [62]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087Google Scholar

    [63]

    Wu F C, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [64]

    Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [65]

    Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [66]

    Regan E C, Wang D Q, Jin C H, Bakti Utama M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [67]

    Huang X, Wang T M, Miao S N, Wang C, Li Z P, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [68]

    Jin C H, Tao Z, Li T X, Xu Y, Tang Y H, Zhu J C, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [69]

    Chen J L, Lin X, Chen M Y, Low T, Chen H S, Dai S Y 2021 Appl. Phys. Lett. 119 240501Google Scholar

    [70]

    Wu Z L, Liu Y R, Hill E H, Zheng Y B 2018 Nanoscale 10 18096Google Scholar

    [71]

    Zhang X Y, Zhong Y H, Low T, Chen H S, Lin X 2021 Phys. Rev. B 103 195405Google Scholar

    [72]

    Mao X R, Shao Z K, Luan H Y, Wang S L, Ma R M 2021 Nat. Nanotechnol. 16 1099Google Scholar

    [73]

    Jin C H, Regan E C, Yan A M, Iqbal Bakti Utama M, Wang D Q, Zhao S H, Qin Y, Yang S J, Zheng Z R, Shi S Y, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [74]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [75]

    González J, Stauber T 2020 Phys. Rev. Lett. 124 186801Google Scholar

  • [1] Lu Zhan-Peng, Xu Zhi-Hao. Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band. Acta Physica Sinica, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [2] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [3] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [4] Preface to the special topic: Two dimensional twisted moiré superlattice. Acta Physica Sinica, 2023, 72(6): 060101. doi: 10.7498/aps.72.060101
    [5] Xu Kun-Qi, Hu Cheng, Shen Pei-Yue, Ma Sai-Qun, Zhou Xian-Liang, Liang Qi, Shi Zhi-Wen. Near-field optical characterization of atomic structures and polaritons in twisted two-dimensional materials. Acta Physica Sinica, 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [6] Gu Jie, Ma Li-Guo. Exciton insulator in a moiré lattice. Acta Physica Sinica, 2023, 72(6): 067101. doi: 10.7498/aps.72.20230079
    [7] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [8] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [9] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [10] Li Ting-Xin. Recent experimental research progress of two-dimensional van der Waals semiconductor moiré superlattices. Acta Physica Sinica, 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [11] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [12] Zhang Ruo-Han, Ren Hui-Ying, He Lin. Flat bands and related novel quantum states in two-dimensional systems. Acta Physica Sinica, 2022, 71(12): 127302. doi: 10.7498/aps.71.20220225
    [13] Sun Hai-Ming. Rashba effect and flat band property in one-dimensional helical Se atomic chain. Acta Physica Sinica, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [14] Xia Shi-Qiang, Tang Li-Qin, Xia Shi-Qi, Ma Ji-Na, Yan Wen-Chao, Song Dao-Hong, Hu Yi, Xu Jing-Jun, Chen Zhi-Gang. Novel phenomena in flatband photonic structures: from localized states to real-space topology. Acta Physica Sinica, 2020, 69(15): 154207. doi: 10.7498/aps.69.20200384
    [15] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [16] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [17] Kang Yan-Shuang, Sun Zong-Li. Effective potential model for the electrostatic correlation in charged fluids. Acta Physica Sinica, 2014, 63(13): 136101. doi: 10.7498/aps.63.136101
    [18] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [19] LI HONG-WEI, WANG TAI-HONG. CORRELATED DISCHARGING OF InAs QUANTUM DOTS IN METAL-SEMICONDUCTOR-METAL STRUCTURE. Acta Physica Sinica, 2001, 50(10): 2038-2043. doi: 10.7498/aps.50.2038
    [20] LIU JING-NAN, SUN XIN. ELECTRON CORRELATION AND TWO-DIMENSIONAL LATTICE INSTABILITY. Acta Physica Sinica, 1992, 41(1): 80-86. doi: 10.7498/aps.41.80
Metrics
  • Abstract views:  9490
  • PDF Downloads:  794
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2022
  • Accepted Date:  03 March 2022
  • Available Online:  15 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回