Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in the Study of Pressure-Modulated Photoelectric Properties of Materials

CHENG Peng YE Tingting PAN Xiaomei XUE Erqiao YAO Deyuan DING Junfeng

Citation:

Progress in the Study of Pressure-Modulated Photoelectric Properties of Materials

CHENG Peng, YE Tingting, PAN Xiaomei, XUE Erqiao, YAO Deyuan, DING Junfeng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The rapid development of optoelectronic technologies has raised increasingly demands on the photoelectric properties of semiconductor materials, thereby driving the exploration of more efficient and controllable modulation strategies. As a clean and effective external-field approach, high-pressure technology can precisely modulate the crystal structure and electronic states of materials. This modulation can induce novel phase transitions and physical effects, thereby enabling significant improvements in performance. In recent years, high-pressure technique has emerged as a powerful tool for optimizing photoelectric properties of semiconductor materials, providing new perspectives for performance enhancement and demonstrating significant research value and application potential.
    This review provides a comprehensive summary of recent progress in the study of pressure-induced evolution of photoelectric properties in various material systems, such as two-dimensional transition metal dichalcogenides, metal and non-metal halides, perovskites, and other representative semiconductors. These materials exhibit a wide variety of pressure-induced structural transformations, accompanied by photocurrent enhancement, broadband spectral response, selfpowered photoresponse, and polarity reversal. Furthermore, the intrinsic links between these structural evolutions and the corresponding photoelectric behaviors are systematically examined.
    Scientific issues and development bottlenecks in this area are also discussed. Despite notable advances, several challenges remain, including the insufficient understanding of intrinsic correlations between structure and photoelectric properties, the lack of comprehensive evaluation parameters. How to realize pressure-enhanced photoelectric properties for applications under ambient conditions is another key challenge. Addressing these issues will be essential for advancing both fundamental understanding and practical applications.
    Overall, pressure modulated photoelectric properties present both significant challenges and exciting opportunities, offering valuable guidance for the design of advanced optoelectronic materials and devices.
  • [1]

    Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photonics 7 888

    [2]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247

    [3]

    Koepfli S M, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J 2023 Science 380 1169

    [4]

    Chetia A, Bera J, Betal A, Sahu S 2022 Mater. Today Commun. 30 103224

    [5]

    Wang H Y, Li Z X, Li D Y, Chen P, Pi L J, Zhou X, Zhai T Y 2021 Adv. Funct. Mater. 31 2103106

    [6]

    Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123

    [7]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927

    [8]

    Liu J, Xia F N, Xiao D, Garcia de Abajo F J, Sun D 2020 Nat. Mater. 19 830

    [9]

    Rao G F, Wang X P, Wang Y, Wangyang P H, Yan C Y, Chu J W, Xue L X, Gong C H, Huang J W, Xiong J, Li Y R 2019 InfoMat 1 272

    [10]

    Tian W, Liu D, Cao F R, Li L 2017 Adv. Opt. Mater. 5 1600468

    [11]

    Ezhilmaran B, Patra A, Benny S, M. R S, V. V A, Bhat S V, Rout C S 2021 J. Mater. Chem. C 9 6122

    [12]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [13]

    Cheng P, Wang Y F, Ye T T, Chu L Q, Yang J, Zeng H, Yao D Y, Pan X M, Zhang J, Jiang H C, Su F H, Ding J F 2022 Appl. Phys. Lett. 120 212104

    [14]

    Pan X M, Xin B J, Zeng H, Cheng P, Ye T T, Yao D Y, Xue E Q, Ding J F, Wang W H 2023 J. Phys. Chem. Lett. 14 3320

    [15]

    Pan X M, Xue E Q, Li W G, Pan W J, Yao D Y, Zhang X, Yin Y W, Cheng P, Liu Q J, Ding J F 2025 Phys. Rev. B 111 115104

    [16]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [17]

    Jiang S Q, Holtgrewe N, Lobanov S S, Su F H, Mahmood M F, McWilliams R S, Goncharov A F 2018 Nat. Commun. 9 2624

    [18]

    Cheng P, Ye T T, Zeng H, Ding J F 2020 AIP Adv. 10 045110

    [19]

    You Y, Li S S, Su T C, Hu M H, Hu Q, Wang J Z, Gao G J, Guo M M, Nie Y 2020 Acta Phys. Sin. 69 238101

    [20]

    Qin X L, Zhu X L, Cao J W, Wang H C, Zhang P 2021 Acta Phys. Sin. 70 146301

    [21]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401

    [22]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302

    [23]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005

    [24]

    Guo S H, Bu K J, Li J W, Hu Q Y, Luo H, He Y H, Wu Y H, Zhang D Z, Zhao Y S, Yang W G, Kanatzidis M G, Lü X J 2021 J. Am. Chem. Soc. 143 2545

    [25]

    Shi Y, Zhou Y, Ma Z W, Xiao G J, Wang K, Zou B 2020 J. Mater. Chem. C 8 12755

    [26]

    Attique S, Ali N, Imran T, Rauf S, Khesro A, Ali S, Wang W J, Khatoon R, Abbas A, Ullah khan E, Yang S K, Wu H Z 2022 Sol. Energy 239 198

    [27]

    Wang L R, Yao P P, Wang F, Li S F, Chen Y P, Xia T Y, Guo E J, Wang K, Zou B, Guo H Z 2020 Adv. Sci. 7 1902900

    [28]

    An C, Du X L, Chen X L, Zhou Y, Zhang M, Zhou Y H, Zhou J, Yang Z R 2023 Phys. Rev. B 107 134501

    [29]

    Qi M Y, Ye M Y, Ma S L, Feng J M, Du M Y, Huang H Y, Song H, Cui T 2024 J. Mater. Chem. C 12 12372

    [30]

    Shen Z W, Wu Z Y, Wang S J, Wang H C, Li H K, Song J, Gao G Y, Wang L, Tian Y J 2024 Chin. Phys. Lett. 41 117101

    [31]

    Shi Y Y, Wu M, Yue L, Wang K, Li Q J, Wu Y, Ye G L, Huang H J 2024 Appl. Phys. Lett. 124 094103

    [32]

    Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 e2400216

    [33]

    Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [35]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [36]

    Song X F, Guo Z X, Zhang Q C, Zhou P, Bao W Z, Zhang D W 2017 Small 13 1700098

    [37]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387

    [38]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388

    [39]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116

    [40]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731

    [41]

    Yuan Y F, Zhang Z T, Wang W K, Zhou Y H, Chen X L, An C, Zhang R R, Zhou Y, Gu C C, Li L, Li X J, Yang Z R 2018 Chin. Phys. B 27 066201

    [42]

    Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202

    [43]

    Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547

    [44]

    Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904

    [45]

    Aji Suleiman A, Zhou X, Zhai T Y 2020 J. Phys. D: Appl. Phys. 54 013002

    [46]

    Cheng P, Ye T T, Yan J W, Zhang K, Yao D Y, Pan X M, Wang Y F, Xue E, Su F H, Zhang J, Ding J F 2023 Adv. Opt. Mater. 11 2300316

    [47]

    Li Z, Li Q, Li H, Tian F, Du M, Fang S, Liu R, Zhang L, Liu B 2022 Small Methods 6 2201044

    [48]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2025 Natl. Sci. Rev. 12 nwae419

    [49]

    Li Z L, Chen S X, Tian F Y, Fang S X, Li Q J, Du M Y, Yuan B, Kang L, Zhang L J, Liu B B 2024 Acta Mater. 278 120263

    [50]

    Xing S Y, Chen S X, Fang S X, Tian F Y, Li Z L, Jin X L, Li Q J, Liu B B 2024 Adv. Opt. Mater. 12 202401433

    [51]

    Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2021 Adv. Funct. Mater. 32 2108636

    [52]

    Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381

    [53]

    Fang Y Q, Kong L P, Wang R Q, Zhang Z, Li Z Y, Wu Y H, Bu K J, Liu X Q, Yan S, Hattori T, Li N N, Li K, Liu G, Huang F Q 2023 Mater. Today Phys. 34 101083

    [54]

    Li Z L, Gao D X, Chen S X, Yue L, Yuan B, Shen X D, Kang L, Li Q J, Liu B B 2025 J. Mater. Chem. A 13 9801

    [55]

    Zhan X H, Jiang X M, Lv P, Xu J, Li F J, Chen Z L, Liu X B 2022 Angew. Chem. Int. Ed. 61 e202205491

    [56]

    Yan H C, Ou T J, Jiao H, Wang T Y, Wang Q L, Liu C L, Liu X Z, Han Y H, Ma Y Z, Gao C X 2017 J. Phys. Chem. Lett. 8 2944

    [57]

    Zhang H F, Yang J Z, Li Q J, You W W, Mao Y L 2023 Appl. Phys. Lett. 123 021107

    [58]

    Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105

    [59]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930

    [60]

    Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663

    [61]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z, Liu B B 2022 Adv. Sci. 10 2205837

    [62]

    Yue L, Li Z L, Yu L C, Xu K B, Liu R, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Liu B B 2024 J. Am. Chem. Soc. 146 25245

    [63]

    Liu T B, Bu K J, Zhang Q, Zhang P J, Guo S H, Liang J Y, Wang B H, Zheng H Y, Wang Y G, Yang W G, Lü X J 2022 Materials 15 3845

    [64]

    Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T 2017 Adv. Mater. 29 1605148

    [65]

    Cheng P, Ye T, Yi M, Cheng W, Zhang L, Hong P, Sun C, Xie Y, Yao D, Pan X, Xue E, Zhang X, Shen C, Ding J 2025 Appl. Phys. Lett. 126 251902

    [66]

    Cheng P, Yao D Y, Yan J W, Ye T T, Liu H H, Zeng H, Pan X M, Zhang G Q, Ding J F 2023 Phys. Rev. Appl. 19 024048

    [67]

    Li Y Z, Yang X G, Lv C F, Qin J X, Zhang C, Zhang Z F, Chen X X, Zang J H, Lou Q, Dong L, Shan C X 2022 Carbon 199 453

    [68]

    Fang S X, Dong Q, Li Z L, Tian H, Liu T Y, Li R X, Jing X L, Yue L, Li C Y, Liu R, Li Q J, Liu B B 2023 J. Phys. Chem. C 127 8383

    [69]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2022 Mater. Res. Lett. 11 134

    [70]

    Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019

    [71]

    Yue L, Cui D D, Tian F B, Liu S, Li Z L, Liu R, Yao Z, Li Y C, Yang D L, Li X D, Li Q J, Du Y, Liu B B 2024 Acta Mater. 263 119529

    [72]

    Zhang G H, Liu F L, Gu T T, Zhao Y S, Li N N, Yang W G, Feng S H 2017 Adv. Electron. Mater. 3 600498

    [73]

    Rahman S, Samanta S, Kuzmin A, Errandonea D, Saqib H, Brewe D L, Kim J, Lu J L, Wang L 2019 Adv. Sci. 6 1901132

    [74]

    Li C, Liu K, Peng S, Feng Q, Jiang D Q, Wen T, Xiao H, Yue B B, Wang Y G 2023 Chem. Mater. 35 1449

    [75]

    Li C, Liu K, Jiang D Q, Wen T, Chen E, Ma Y Y, Yue B B, Chu S Q, Wang Y G 2023 Chem. Mater. 35 4821

    [76]

    Li C Y, Liu R, Zhao T T, Li Z L, Yue L, Lin T, Zhang X T, Li Q J, Liu B B 2022 Appl. Phys. Lett. 121 042102

    [77]

    Ye M Y, Li Y, Tang R L, Liu S Y, Ma S L, Liu H Z, Tao Q, Yang B, Wang X, Yue H J, Zhu P W 2022 Nanoscale 14 2668

    [78]

    Wang L R, Wang K, Xiao G J, Zeng Q S, Zou B 2016 J. Phys. Chem. Lett. 7 5273

    [79]

    Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556

    [80]

    Wang F, Tan M P, Li C, Niu C Y, Zhao X 2019 Org. Electron. 67 89

    [81]

    Morana M, Malavasi L 2021 Sol. RRL 5 2100550

    [82]

    Zhang W W, Tang G, Sahoo M P K, Liang Y T, Zhang Y J 2022 Phys. Rev. B 105 075150

    [83]

    Mączka M, Dybała F, Herman A P, Paraguassu W, Barros dos Santos A J, Kudrawiec R 2024 RSC Adv. 14 38514

    [84]

    Feng H C, Zhang G Z, Feng Z B, Li Q, Wang G Y, Li Y W, Fang Y Y, Liu C L 2024 Appl. Phys. Lett. 124 043902

  • [1] GUO Hongwei, HE Miaomiao, JIANG Yun, LI Hui, ZHANG Jinyan, LIAN Min, CUI Tian. Structural and optoelectronic properties of lead-free double perovskite Cs2AgInCl2 under pigh pressure. Acta Physica Sinica, doi: 10.7498/aps.74.20250613
    [2] Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian. Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2. Acta Physica Sinica, doi: 10.7498/aps.73.20240557
    [3] Liu Ze-Tao, Chen Bo, Ling Wei-Dong, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Phase transitions of palladium under dynamic shock compression. Acta Physica Sinica, doi: 10.7498/aps.71.20211511
    [4] Wang Bi-Han, Li Bing, Liu Xu-Qiang, Wang Hao, Jiang Sheng, Lin Chuan-Long, Yang Wen-Ge. Millisecond time-resolved synchrotron radiation X-ray diffraction and high-pressure rapid compression device and its application. Acta Physica Sinica, doi: 10.7498/aps.71.20212360
    [5] Phase Transitions of Palladium under Dynamic Shock Compression. Acta Physica Sinica, doi: 10.7498/aps.70.20211511
    [6] Sun Xiao-Wei, Song Ting, Liu Zi-Jiang, Wan Gui-Xin, Zhang Lei, Chang Wen-Li. Numerical prediction of structural stability and thermodynamic properties for MgF2 with fluorite- type structure under high pressure. Acta Physica Sinica, doi: 10.7498/aps.69.20200289
    [7] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, doi: 10.7498/aps.68.20190204
    [8] Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility. Acta Physica Sinica, doi: 10.7498/aps.67.20172159
    [9] Yu Jia, Liu Tong, Zhao Kang, Pan Bo-Jin, Mu Qing-Ge, Ruan Bin-Bin, Ren Zhi-An. Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2. Acta Physica Sinica, doi: 10.7498/aps.67.20181393
    [10] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, doi: 10.7498/aps.64.227802
    [11] Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei. Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations. Acta Physica Sinica, doi: 10.7498/aps.64.087103
    [12] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, doi: 10.7498/aps.63.186401
    [13] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, doi: 10.7498/aps.61.017501
    [14] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, doi: 10.7498/aps.60.107203.1
    [15] Li Xiao-Bing, Zhao Xiang-Yong, Wang Yao-Jin, Wang Fei-Fei, Chen Chao, Luo Hao-Su. Study of the dipole rotation path of BaTiO3 single crystal based on dielectric properties in structure phase transition. Acta Physica Sinica, doi: 10.7498/aps.58.4225
    [16] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.55.5172
    [17] Kong Ling-Gang, Kang Jin-Feng, Wang Yi, Liu Li-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in bulk CoxTi1-xO2-δ induced by the phase transformation in the hydrogenation sintering process. Acta Physica Sinica, doi: 10.7498/aps.55.1453
    [18] Sun Li-Tao, Gong Jin-Long, Zhu Zhi-Yuan, Zhu De-Zhang, He Sui-Xia, Wang Zhen-Xia. Plasma-induced transformation of carbon nanotubes to nanocrystalline diamond. Acta Physica Sinica, doi: 10.7498/aps.53.3467
    [19] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, doi: 10.7498/aps.52.2135
    [20] LIU LI-HUA, DONG CHENG, DENG DONG-MEI, CHEN ZHEN-PING, ZHANG JIN-CANG. POSITRON ANNIHILATION STUDY OF THE STRUCTUREAND CLUSTERS IN Fe-DOPED YBCO. Acta Physica Sinica, doi: 10.7498/aps.50.769
Metrics
  • Abstract views:  240
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Available Online:  02 September 2025
  • /

    返回文章
    返回