Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase transitions of palladium under dynamic shock compression

Liu Ze-Tao Chen Bo Ling Wei-Dong Bao Nan-Yun Kang Dong-Dong Dai Jia-Yu

Citation:

Phase transitions of palladium under dynamic shock compression

Liu Ze-Tao, Chen Bo, Ling Wei-Dong, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu
PDF
HTML
Get Citation
  • For palladium (Pd) as a typical high-pressure standard material, studying its structural changes and thermodynamic properties under extreme conditions is widely demanded and challenging. Particularly, the solid-solid phase transition process of Pd under shock loading is understood still scarcely. In this paper, using the classical molecular dynamics simulations with embedded atom method (EAM) based on the interatomic potential, we investigate the phase transition of single crystal Pd from atomic scale under shock loading. A series of structural features is observed in a pressure range of 0–375 GPa, revealing that the structure feature transforms from the initial face-centered cubic (FCC) structure to the stacking faults body-centered cubic (BCC) structure with hexagonal close-packed (HCP) structure, and finally complete melting. Under shock loading of $ \left\langle {100} \right\rangle $ oriented bulk Pd, we find the transformation to BCC structure can take place almost at 70.0 GPa, which is much lower than the previous static calculation result. In addition, we find that the phase transition depends on the direction initially impacting crystal. Under impacting along the $ \left\langle {110} \right\rangle $ direction and the $ \left\langle {111} \right\rangle $ direction, the FCC-BCC phase transition pressures increase to 135.8 GPa and 165.4 GPa, respectively. Also, the introduction of defects will increase the phase transition pressure of FCC-BCC by 20–30 GPa in comparison with perfect crystals, which is verified by the distribution of the potential energy. An interesting phenomenon that FCC-BCC transition pressure of Pd decreases under shock loading is found in this work, which provides a new theoretical insight into the application of high pressure experiments in the future.
      Corresponding author: Chen Bo, chenbochain@nudt.edu.cn ; Dai Jia-Yu, jydai@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774429, 12104507), the NSAF Joint Fund, China (Grant No. U1830206), the National Key R&D Program of China (Grant No. 2017YFA0403200), and the China Postdoctoral Science Foundation (Grant No. 2019M664024).
    [1]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B 2014 Frontiers and Challenges in Warm Dense Matter (Vol. 1) (Switzerland: Springer) pp1–3

    [2]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [3]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [4]

    Nagao H, Nakamura K J, Kondo K, Ozaki N, Takamatsu K, Ono T, Shiota T, Ichinose D, Tanaka K A, Wakabayashi K 2006 Phys. Plasmas 13 052705Google Scholar

    [5]

    Yokoo M, Kawai N, Nakamura K G, Kondo K I 2008 Appl. Phys. Lett. 92 051901Google Scholar

    [6]

    Nellis W J, Weir S T, Mitchell A C 1996 Science 273 936Google Scholar

    [7]

    Weir S T, Mitchell A C, Nellis W J 1996 Phys. Rev. Lett. 76 1860Google Scholar

    [8]

    Hartley N J, Brown S, Cowan T E, Cunningham E, Döppner T, Falcone R W, Fletcher L B, Frydrych S, Galtier E, Gamboa E J 2019 Sci. Rep. 9 1

    [9]

    Briggs R, Coppari F, Gorman M G, Smith R F, Tracy S J, Coleman A L, Fernandez-Panella A, Millot M, Eggert J H, Fratanduono D E 2019 Phys. Rev. Lett. 123 045701Google Scholar

    [10]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [11]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [12]

    Guo Y L, Wei J H, Liu X, Ke X Z, Jiao Z Y 2021 Chin. Phys. B 30 016101Google Scholar

    [13]

    Lu M Y, Huang Y P, Tian F B, Li D, Duan D F, Zhou Q, Cui T 2020 Chin. Phys. B 29 053104Google Scholar

    [14]

    Hesse R W 2007 Jewelry-Making Through History: an Encyclopedia (Westport: Greenwood Publishing Group) p146

    [15]

    Colon P, Pradelle-Plasse N, Galland J 2003 Dent. Mater. 19 232Google Scholar

    [16]

    Harper C A 1997 Passive Electronic Component Handbook. McGraw-Hill Professional (New York: McGraw-Hill) pp580

    [17]

    Fleischmann M, Pons S, Hawkins M 1989 J. Electroanal. Chem. 261 301Google Scholar

    [18]

    Mutschele T, Kirchheim R 1987 Scr. Mater. 21 1351101

    [19]

    Pundt A, Sachs C, Winter M, Reetz M T, Fritsch D, Kirchheim R 1999 J. Alloys Compd. 293-295 480

    [20]

    Bonivardi A L, Baltanas M A 1994 React. Kinet. Catal. Lett. 52 95

    [21]

    Eastman J A, Thompson L J, Kestel B J 1993 Phys. Rev. 48 84Google Scholar

    [22]

    Foiles S M, Adams J B 1989 Phys. Rev. B 40 9

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [24]

    Liu Z L, Yang J H, Cai L C, Jing F Q, Alfѐ D 2011 Phys. Rev. B 83 144113Google Scholar

    [25]

    Errandonea D 2013 Phys. Rev. B 87 054108Google Scholar

    [26]

    Jeong J W, Chang K 1999 J. Phys. Condens. Matter 11 3799Google Scholar

    [27]

    Liu Z L, Zhang X L, Cai L C 2015 J. Chem. Phys. 11 637

    [28]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202Google Scholar

    [29]

    孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民 2005 物理学报 54 5830Google Scholar

    Sun X W, Zhe Y D, Liu Z J, Liu Y X, Wang C W, Liu W M 2005 Acta Phys. Sin. 54 5830Google Scholar

    [30]

    段芳莉, 王家序, 雒建斌, 温诗铸 2007 物理学报 56 6552Google Scholar

    Duan F L, Wang J X, Luo J B, Weng S Z 2007 Acta Phys. Sin. 56 6552Google Scholar

    [31]

    邵建立, 王裴, 秦承森, 周洪强 2007 物理学报 56 5389Google Scholar

    Shao J L, Wang F, Qing C S, Zhou H Q 2007 Acta Phys. Sin. 56 5389Google Scholar

    [32]

    周化光, 林鑫, 王猛, 黄卫东 2013 物理学报 62 056803Google Scholar

    Zhou H G, Lin X, Wang M, Huang W D 2013 Acta Phys. Sin. 62 056803Google Scholar

    [33]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [34]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503Google Scholar

    [35]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012

    [36]

    韦昭召, 马骁, 柯常波, 张新平 2020 物理学报 69 136102Google Scholar

    Wei Z Z, Ma X, Ke C B, Zhang X P 2020 Acta Phys. Sin. 69 136102Google Scholar

    [37]

    Kien P H 2014 Int. Scholarly Res. Not. 2014 253627

    [38]

    Sun H Y, Kang D D, Hou Y, Dai J Y 2017 Matter Radiat. at Extremes 2 287Google Scholar

    [39]

    Neogi A, Mitra N 2017 Sci. Rep. 7 1Google Scholar

    [40]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [41]

    Schiøtz J, Tolla F D D, Jacobsen K W 1998 Nature 391 561Google Scholar

    [42]

    Stukowski A 2012 Model. Simul. Mater. Sci. Eng. 20 045021Google Scholar

    [43]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [44]

    Tsuzuki H, Branicio P, Rino J 2007 Comput. Phys. Commun. 177 518Google Scholar

    [45]

    Zeng Q Y, Dai J Y 2020 Sci. China Phys. Mech. Astron. 63 263011Google Scholar

    [46]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [47]

    Marsh S P 1979 Los Alamos Shock Hugoniot Data (Berkeley: University of California Press)

    [48]

    Thiel M V 1997 Compendium of Shock Wave Data (Livermore: Lawrence Livermore National Laboratory) Report UCRL 50108

    [49]

    Mcqueen R G, Marsh, S P, Taylor J W, Fritz J N, Carter W J 1970 The Equation of State of Solids from Shock Wave Studies (New York: Academic) pp348–350

  • 图 1  理论计算得到的雨贡纽P-V曲线与冲击实验数据的比较

    Figure 1.  Hugoniot P-V curves compared with the shock experimental data and theoretical results.

    图 2  (a)沿$\left\langle {100} \right\rangle $晶向冲击后不同结构特征的钯的原子分数与纵向应力的关系; (b)不同结构特征随纵向应力变化的可视化表示; (c)温度与纵向应力的关系, 其中红色点线图为刘中利等[24]冲击熔化的分子动力学模拟数据

    Figure 2.  (a) Fraction of atoms with different structural features versus longitudinal stress along the crystallographic direction $\left\langle {100} \right\rangle $; (b) visual representation of the variation of different structural features with longitudinal stress; (c) temperature versus longitudinal stress, the red dotted line plot shows the MD simulation data of Liu et al.[24] shock melting.

    图 3  沿不同晶向冲击后的结果 (a) $\left\langle {100} \right\rangle $晶向; (b) $\left\langle {110} \right\rangle $晶向; (c) $\left\langle {100} \right\rangle $晶向. 其中实线表示冲击速度在5.0—7.8 km/s范围内结构的RDF图像, 点划线表示与之对应的配位数曲线, 黑色虚线位置指向初始状态下的第一峰的位置

    Figure 3.  Results along different crystallographic directions: (a) $\left\langle {100} \right\rangle $; (b) $\left\langle {110} \right\rangle $; (c) $\left\langle {111} \right\rangle $. The solid lines indicate radial distribution functions of deformed micro-structure shocked at a range of shock velocity of 5.0–7.8 km/s. The dotted lines indicate the coordination number curves that correspond to the RDF, and the dashed lines points to the position of the first peak in the initial state.

    图 4  利用a-CNA方法得到的沿不同晶向冲击的不同结构比例随压强的变化 (a) $\left\langle {110} \right\rangle $晶向; (b) $\left\langle {111} \right\rangle $晶向

    Figure 4.  Fraction of atoms with different structural versus compressing stress along different crystallographic directions obtained by a-CNA: (a) $\left\langle {110} \right\rangle $; (b) $\left\langle {111} \right\rangle $.

    图 5  (a)不同缺陷率的晶体结构在冲击压缩后温度与压力的关系; (b), (c), (d)分别表示冲击压缩下含不同缺陷率体系的原子类别占比随冲击压强的变化

    Figure 5.  (a) Comparison of Hugoniot P-T curve among crystal structures with different porosities defects; (b), (c), (d) comparison of phase transition processes of atoms of system with variation porosities defects under shock compression.

    图 6  (a)完美晶体与含缺陷晶体在冲击前后的势能差值分布图; (b)不同体系中势能差值的概率分布曲线

    Figure 6.  (a) Distribution diagram of potential energy difference between perfect crystal and defective crystal before and after compression; (b) probability distribution curves of potential energy differences in perfect crystal and defective crystal.

  • [1]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B 2014 Frontiers and Challenges in Warm Dense Matter (Vol. 1) (Switzerland: Springer) pp1–3

    [2]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [3]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [4]

    Nagao H, Nakamura K J, Kondo K, Ozaki N, Takamatsu K, Ono T, Shiota T, Ichinose D, Tanaka K A, Wakabayashi K 2006 Phys. Plasmas 13 052705Google Scholar

    [5]

    Yokoo M, Kawai N, Nakamura K G, Kondo K I 2008 Appl. Phys. Lett. 92 051901Google Scholar

    [6]

    Nellis W J, Weir S T, Mitchell A C 1996 Science 273 936Google Scholar

    [7]

    Weir S T, Mitchell A C, Nellis W J 1996 Phys. Rev. Lett. 76 1860Google Scholar

    [8]

    Hartley N J, Brown S, Cowan T E, Cunningham E, Döppner T, Falcone R W, Fletcher L B, Frydrych S, Galtier E, Gamboa E J 2019 Sci. Rep. 9 1

    [9]

    Briggs R, Coppari F, Gorman M G, Smith R F, Tracy S J, Coleman A L, Fernandez-Panella A, Millot M, Eggert J H, Fratanduono D E 2019 Phys. Rev. Lett. 123 045701Google Scholar

    [10]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [11]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [12]

    Guo Y L, Wei J H, Liu X, Ke X Z, Jiao Z Y 2021 Chin. Phys. B 30 016101Google Scholar

    [13]

    Lu M Y, Huang Y P, Tian F B, Li D, Duan D F, Zhou Q, Cui T 2020 Chin. Phys. B 29 053104Google Scholar

    [14]

    Hesse R W 2007 Jewelry-Making Through History: an Encyclopedia (Westport: Greenwood Publishing Group) p146

    [15]

    Colon P, Pradelle-Plasse N, Galland J 2003 Dent. Mater. 19 232Google Scholar

    [16]

    Harper C A 1997 Passive Electronic Component Handbook. McGraw-Hill Professional (New York: McGraw-Hill) pp580

    [17]

    Fleischmann M, Pons S, Hawkins M 1989 J. Electroanal. Chem. 261 301Google Scholar

    [18]

    Mutschele T, Kirchheim R 1987 Scr. Mater. 21 1351101

    [19]

    Pundt A, Sachs C, Winter M, Reetz M T, Fritsch D, Kirchheim R 1999 J. Alloys Compd. 293-295 480

    [20]

    Bonivardi A L, Baltanas M A 1994 React. Kinet. Catal. Lett. 52 95

    [21]

    Eastman J A, Thompson L J, Kestel B J 1993 Phys. Rev. 48 84Google Scholar

    [22]

    Foiles S M, Adams J B 1989 Phys. Rev. B 40 9

    [23]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [24]

    Liu Z L, Yang J H, Cai L C, Jing F Q, Alfѐ D 2011 Phys. Rev. B 83 144113Google Scholar

    [25]

    Errandonea D 2013 Phys. Rev. B 87 054108Google Scholar

    [26]

    Jeong J W, Chang K 1999 J. Phys. Condens. Matter 11 3799Google Scholar

    [27]

    Liu Z L, Zhang X L, Cai L C 2015 J. Chem. Phys. 11 637

    [28]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202Google Scholar

    [29]

    孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民 2005 物理学报 54 5830Google Scholar

    Sun X W, Zhe Y D, Liu Z J, Liu Y X, Wang C W, Liu W M 2005 Acta Phys. Sin. 54 5830Google Scholar

    [30]

    段芳莉, 王家序, 雒建斌, 温诗铸 2007 物理学报 56 6552Google Scholar

    Duan F L, Wang J X, Luo J B, Weng S Z 2007 Acta Phys. Sin. 56 6552Google Scholar

    [31]

    邵建立, 王裴, 秦承森, 周洪强 2007 物理学报 56 5389Google Scholar

    Shao J L, Wang F, Qing C S, Zhou H Q 2007 Acta Phys. Sin. 56 5389Google Scholar

    [32]

    周化光, 林鑫, 王猛, 黄卫东 2013 物理学报 62 056803Google Scholar

    Zhou H G, Lin X, Wang M, Huang W D 2013 Acta Phys. Sin. 62 056803Google Scholar

    [33]

    Plimpton S J 1995 J. Comput. Phys. 117 1Google Scholar

    [34]

    Reed E J, Fried L E, Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503Google Scholar

    [35]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012

    [36]

    韦昭召, 马骁, 柯常波, 张新平 2020 物理学报 69 136102Google Scholar

    Wei Z Z, Ma X, Ke C B, Zhang X P 2020 Acta Phys. Sin. 69 136102Google Scholar

    [37]

    Kien P H 2014 Int. Scholarly Res. Not. 2014 253627

    [38]

    Sun H Y, Kang D D, Hou Y, Dai J Y 2017 Matter Radiat. at Extremes 2 287Google Scholar

    [39]

    Neogi A, Mitra N 2017 Sci. Rep. 7 1Google Scholar

    [40]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [41]

    Schiøtz J, Tolla F D D, Jacobsen K W 1998 Nature 391 561Google Scholar

    [42]

    Stukowski A 2012 Model. Simul. Mater. Sci. Eng. 20 045021Google Scholar

    [43]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [44]

    Tsuzuki H, Branicio P, Rino J 2007 Comput. Phys. Commun. 177 518Google Scholar

    [45]

    Zeng Q Y, Dai J Y 2020 Sci. China Phys. Mech. Astron. 63 263011Google Scholar

    [46]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [47]

    Marsh S P 1979 Los Alamos Shock Hugoniot Data (Berkeley: University of California Press)

    [48]

    Thiel M V 1997 Compendium of Shock Wave Data (Livermore: Lawrence Livermore National Laboratory) Report UCRL 50108

    [49]

    Mcqueen R G, Marsh, S P, Taylor J W, Fritz J N, Carter W J 1970 The Equation of State of Solids from Shock Wave Studies (New York: Academic) pp348–350

  • [1] Phase Transitions of Palladium under Dynamic Shock Compression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211511
    [2] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [3] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] Sun Xiao-Wei, Song Ting, Liu Zi-Jiang, Wan Gui-Xin, Zhang Lei, Chang Wen-Li. Numerical prediction of structural stability and thermodynamic properties for MgF2 with fluorite- type structure under high pressure. Acta Physica Sinica, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [5] Feng Xiao-Wei, Li Jun-Cheng, Wang Hong-Bo, Chang Jing-Zhen. Mesomechanism of elastic precursor decay in alumina under plate impact loading. Acta Physica Sinica, 2016, 65(16): 166201. doi: 10.7498/aps.65.166201
    [6] Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei. Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations. Acta Physica Sinica, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [7] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [8] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [9] Zheng Xiao-Qing, Yang Yang, Sun De-Yan. Atomistic characterization of a modeled binary ordered alloy solid-liquid interface. Acta Physica Sinica, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [10] Dong Lei, Wang Wei-Guo. Molecular dynamics simulation on the struatural stability of [0 1 1] tilt incoherent 3 gain boundaries in pure copper. Acta Physica Sinica, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [11] Yan Xiao, Xin Zi-Hua, Zhang Jiao-Jiao. Molecular dynamics study on the structure and properties of silicon-graphdiyne. Acta Physica Sinica, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [12] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [13] Xia Dong, Wang Xin-Qiang. Structures and melting behaviors of ultrathin platinum nanowires. Acta Physica Sinica, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [14] Kai Hua, Li Yun-Chao, Guo De-Cheng, Li Shuang, Li Zhi-Jie. Molecular dynamics simulation of the structure characteristic of diamond-like carbon films influence by oblique incidence ion-beam-assisted deposition. Acta Physica Sinica, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [15] Chen Yu-Xiang, Xie Guo-Feng, Ma Ying, Zhou Yi-Chun. Molecular-dynamics simulation of the structure and elastic constants of barium titanium. Acta Physica Sinica, 2009, 58(6): 4085-4089. doi: 10.7498/aps.58.4085
    [16] Cao Li-Xia, Shang Jia-Xiang, Zhang Yue. Molecular dynamics simulation of stress-induced martensitic phase transformation in NiAl. Acta Physica Sinica, 2009, 58(10): 7307-7312. doi: 10.7498/aps.58.7307
    [17] Ma Tian-Bao, Hu Yuan-Zhong, Wang Hui. Molecular dynamics simulation of the growth and structural properties of ultra-thin diamond-like carbon films. Acta Physica Sinica, 2006, 55(6): 2922-2927. doi: 10.7498/aps.55.2922
    [18] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [19] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 2003, 52(9): 2135-2139. doi: 10.7498/aps.52.2135
Metrics
  • Abstract views:  4527
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2021
  • Accepted Date:  16 September 2021
  • Available Online:  23 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回