-
HfS2, as a typical IVB group transition metal dichalcogenide (TMD) material, has shown great potential applications in various fields such as photo-sensing, communication, and imaging due to its high carrier mobility and interlayer current density characteristics. Recent studies have revealed the significant role of pressure in modulating the spectral response range and electrical transport properties of TMDs, which has aroused our interest in studying the pressure regulation of the optoelectronic properties of HfS2. In this study, diamond anvil cell based high-pressure in-situ photocurrent, Raman scattering spectroscopy, alternating current impedance spectroscopy, ultraviolet-visible absorption spectroscopy measurements, and combined first-principles calculations are used to systematically investigate the effects of pressure on the electrical transport and optoelectronic properties of HfS2. The experimental results show that the photocurrent of HfS2 continuously increases with pressure rising. Within a pressure range of 0–10.2 GPa, the photocurrent and response of HfS2 show a rapid upward trend with pressure rising; at 10.2 GPa, the photocurrent and response of HfS2 (Iph = 0.32 μA, R = 8.19 μA/W) are about three orders of magnitude higher than their initial values at 0.5 GPa (Iph = 1.40 × 10–4 μA, R = 3.56 × 10–3 μA/W). At the pressure above 10.2 GPa, the growth rate of photocurrent and response slow down significantly, which are related to the structural phase transition of HfS2 near 10.0 GPa. Further compression to 30.1 GPa results in a maximum photocurrent of 3.35 μA, which is five orders of magnitude higher than its initial value at 0.5 GPa. This significant enhancement is attributed to the strengthening of S-S interlayer interaction forces under pressure, which leads band gap and resistivity to decrease. In addition, based on the modified Becke-Johnson (mBJ) exchange-correlation potential, the electronic band structure and optical properties of HfS2 in its initial phase are calculated and analyzed using WIEN2K software package. The calculation results show that with the increase of pressure, the optical absorption coefficient and the real part of the photoconductivity of HfS2 along the c-axis significantly increase, which further reveals the intrinsic physical mechanism of the enhanced photoresponse of HfS2 under pressure. This study offers a new insight into pressure regulated optoelectronic properties of layered materials.
-
Keywords:
- HfS2 /
- high pressure /
- photoelectric properties
[1] Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713
Google Scholar
[2] Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918
Google Scholar
[3] Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033
Google Scholar
[4] Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Physics E 144 115456
Google Scholar
[5] Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901
Google Scholar
[6] Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763
Google Scholar
[7] Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731
Google Scholar
[8] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768
Google Scholar
[9] Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310
Google Scholar
[10] Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927
Google Scholar
[11] Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139
Google Scholar
[12] Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 173
Google Scholar
[13] Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039
[14] Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227
[15] Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044
Google Scholar
[16] Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016
Google Scholar
[17] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 物理学报 74 067802
Google Scholar
Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802
Google Scholar
[18] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134
Google Scholar
[19] Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216
Google Scholar
[20] Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105
Google Scholar
[21] Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663
Google Scholar
[22] Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547
Google Scholar
[23] Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419
Google Scholar
[24] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202
Google Scholar
[25] Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258
Google Scholar
[26] Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381
Google Scholar
[27] Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250
Google Scholar
[28] Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802
Google Scholar
[29] Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118
Google Scholar
[30] Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904
Google Scholar
[31] Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611
Google Scholar
[32] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692
Google Scholar
[33] Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101
Google Scholar
[34] Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401
Google Scholar
[35] Terashima K, Imai I 1987 Solid State Commun. 63 315
Google Scholar
[36] Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445
Google Scholar
[37] Jiang H 2011 J. Chem. Phys. 134 204705
Google Scholar
[38] Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019
Google Scholar
[39] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163
Google Scholar
[40] Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636
Google Scholar
[41] Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859
Google Scholar
[42] Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121
Google Scholar
[43] Roubi L, Carlone C 1988 Phys. Rev. B 37 6808
Google Scholar
[44] Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45
[45] Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757
Google Scholar
[46] Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541
Google Scholar
[47] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717
Google Scholar
[48] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 物理学报 71 096101
Google Scholar
Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101
Google Scholar
[49] Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044
Google Scholar
-
图 1 常温常压下HfS2的XRD和紫外-可见吸收光谱 (a) XRD图谱, 其中黑线代表测量数据, 红线代表标准化衍射峰位置, 插图为HfS2样品光学显微镜照片及对应的晶格参数; (b) 紫外-可见吸收光谱, 插图展示了如何通过Tauc plot法拟合获得光学带隙
Figure 1. The XRD pattern and ultraviolet-visible absorption spectrum of HfS2 at ambient pressure: (a) The XRD pattern (the black line represents the measured data, and the red line represents the normalized diffraction peak positions), inset shows optical microscopy image and corresponding lattice parameters of powder sample HfS2; (b) ultraviolet-visible absorption spectrum, the inset shows the band gap determined by the Tauc plot method.
图 2 外加偏压为0.1 V, 光功率密度为500 mW/cm2模拟太阳光照射下HfS2样品不同压力下光电流测量结果 (a) 选定压力下 HfS2的光电流(横轴上方的“on”和“off”分别代表打开光源和关闭光源); (b) 加压和卸压过程中HfS2的光电流和响应度随压力的变化关系(红色实心球和红色空心三角形分别代表加压和卸压过程的光电流, 蓝色实心球和蓝色空心三角形分别代表加压和卸压过程的响应度)
Figure 2. Photocurrent measurement results of HfS2 sample under 500 mW/cm2 simulated sunlight irradiation with an applied bias voltage of 0.1 V: (a) The photocurrent of HfS2 at different pressures (the “on” and “off” above the horizontal axis represent the light source on and off, respectively); (b) pressure dependent photocurrents and responsivity(R) of HfS2 during compression and decompression processes (red solid ball and red open triangles represent the photocurrent during compression and decompression, respectively; blue solid ball and blue open triangles represent the responsivity (R) during compression and decompression, respectively).
图 5 (a) 不同压力下HfS2的紫外-可见吸收光谱; (b) 实验及理论计算的HfS2压力依赖的带隙(其中红色实心球代表实验带隙值, 绿色五角星代表理论计算带隙值)
Figure 5. (a) The ultraviolet-visible absorption spectra of HfS2 under different pressures; (b) experimental and theoretical calculations of HfS2’s pressure-dependent bandgap (red solid ball represent experimental bandgap values, and green pentagrams represent calculated bandgap values, respectively).
图 7 不同压力下 HfS2 的光学性质 (1 atm = 1.013 × 105 Pa) (a) 选定压力下垂直于c轴方向的吸收系数; (b) 选定压力下沿c轴方向的吸收系数; (c) 选定压力下垂直于c轴方向的光电导系数实部; (d) 选定压力下沿c轴方向的光电导系数实部
Figure 7. Optical properties of HfS2 at different pressures (1 atm = 1.013 × 105 Pa): (a) The absorption coefficient perpendicular to the c-axis at selected pressures; (b) the absorption coefficient parallel to the c-axis at selected pressures; (c) the real part of the photoconductivity coefficient perpendicular to the c-axis at the selected pressures; (d) the real part of the photoconductivity parallel to the c-axis at selected pressures.
-
[1] Mattinen M, Popov G, Vehkamaki M, King P J, Mizohata K, Jalkanen P, Raisanen J, Leskela M, Ritala M 2019 Chem. Mater. 31 5713
Google Scholar
[2] Yan C Y, Gan L, Zhou X, Guo J, Huang W J, Huang J W, Jin B, Xiong J, Zhai T Y, Li Y R 2017 Adv. Funct. Mater. 27 1702918
Google Scholar
[3] Zhao Q Y, Guo Y H, Si K Y, Ren Z Y, Bai J T, Xu X L 2017 Phys. Status Solidi B 254 1700033
Google Scholar
[4] Xuan J Z, Luan L J, He J, Chen H X, Zhang Y, Liu J, Tian Y, Liu C, Yang Y, Wang X Q, Yuan C G, Duan L 2022 Physics E 144 115456
Google Scholar
[5] Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, Grzeszczyk M, Muhammad Z, Zhao W S, Ibáñez J, Faugeras C, Molas M R 2024 J. Appl. Phys. 136 035901
Google Scholar
[6] Zhang Q H, Gu H G, Guo Z F, Liu S Y 2025 Appl. Surf. Sci. Adv. 27 100763
Google Scholar
[7] Zhang W X, Huang Z S, Zhang W L, Li Y 2014 Nano Res. 7 1731
Google Scholar
[8] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768
Google Scholar
[9] Wang D G, Lu Y, Meng J H, Zhang X W, Yin Z G, Gao M L, Wang Y, Cheng L K, You J B, Zhang J C 2019 Nanoscale 11 9310
Google Scholar
[10] Muhammad Z, Islam R, Wang Y, Autieri C, Lv Z, Singh B, Vallobra P, Zhang Y, Zhu L, Zhao W S 2022 ACS Appl. Mater. Interfaces 14 35927
Google Scholar
[11] Ye J F, Liao K, Fu X, Zhong F, Li Q, Wang G, Miao J S 2022 Infrared Phys. Technol. 123 104139
Google Scholar
[12] Lin D Y, Shih Y T, Tseng W C, Lin C F, Chen H Z 2021 Materials 15 173
Google Scholar
[13] Sun Q G, Yang C L, Li X H, Liu Y L, Zhao W K, Gao F 2025 J. Mater. Chem. C 10 1039
[14] Luo Q L, Liang Y C, Li X X, Li W Q, Chen Q 2025 Mol. Catal. 583 115227
[15] Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y, Liu C L 2024 Ultrafast Sci. 4 0044
Google Scholar
[16] Chen L, Chu Y, Qin X X, Gao Z J, Zhang G Z, Zhang H W, Wang Q L, Li Q, Guo H Z, Li Y W, Liu C L 2024 Adv. Sci. 11 2308016
Google Scholar
[17] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰 2025 物理学报 74 067802
Google Scholar
Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802
Google Scholar
[18] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134
Google Scholar
[19] Wang N, Zhang G Z, Wang G Y, Feng Z B, Li Q, Zhang H W, Li Y W, Liu C L 2024 Small 20 2400216
Google Scholar
[20] Ou T J, Liu C L, Yan H C, Han Y H, Wang Q L, Liu X Z, Ma Y Z, Gao C X 2019 Appl. Phys. Lett. 114 062105
Google Scholar
[21] Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G, Jia Q X 2016 Adv. Mater. 28 8663
Google Scholar
[22] Zhang X T, Dong Q, Li Z L, Jing X L, Liu R, Liu B, Zhao T T, Lin T, Li Q J, Liu B B 2022 Mater. Res. Lett. 10 547
Google Scholar
[23] Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2024 Natl. Sci. Rev. 12 419
Google Scholar
[24] Wang P, Wang Y G, Qu J Y, Zhu Q, Yang W G, Zhu J L, Wang L P, Zhang W W, He D W, Zhao Y S 2018 Phys. Rev. B 97 235202
Google Scholar
[25] Arpita Aparajita A N, Shwetha G, Sanjay Kumar N R, Srihari V, Mani A 2025 Mater. Chem. Phys. 345 131258
Google Scholar
[26] Lu R H, Li Z L, Yue L, Song L Y, Fang S X, Liu T Y, Shen P F, Li Q J, Jin X L, Liu B B 2024 Mater. Today Phys. 42 101381
Google Scholar
[27] Chen S X, Li Z L, Li S C, Xu K B, Ma N, Yue L, Jin X L, Liu R, Dong Q, Li Q J, Liu B B 2025 Laser Photonics Rev. 19 2500250
Google Scholar
[28] Zhang S H, Wang H L, Liu H, Zhen J P, Wan S, Deng W, Han Y H, Chen B, Gao C X 2023 Phys. Rev. Mater. 7 104802
Google Scholar
[29] Zhong W, Deng W, Hong F, Yue B B 2023 Phys. Rev. B 107 134118
Google Scholar
[30] Wang N, Moutaabbid H, Feng Z B, Wang G Y, Zhang H W, Zhang G Z, Cao Z Y, Li Y W, Liu C L 2024 Appl. Phys. Lett. 125 093904
Google Scholar
[31] Feng J M, Qi M Y, Song H, Ye M Y, Runowski M, Hu Z Y, Huang L K, Lian M, Zhao X B, Dan Y Q, Ma S L, Cui T 2025 Chem. Eng. J. 515 163611
Google Scholar
[32] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692
Google Scholar
[33] Zhang Y Z, Zhang G Z, Zhang H W, Ou T J, Wang Q L, Wang L R, Li Y W, Liu C L 2023 Appl. Phys. Lett. 122 132101
Google Scholar
[34] Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401
Google Scholar
[35] Terashima K, Imai I 1987 Solid State Commun. 63 315
Google Scholar
[36] Greenaway D L, Nitsche R 1965 J. Phys. Chem. Solids 26 1445
Google Scholar
[37] Jiang H 2011 J. Chem. Phys. 134 204705
Google Scholar
[38] Zhang G H, Zhang Q, Hu Q Y, Wang B H, Yang W G 2019 J. Mater. Chem. A 7 4019
Google Scholar
[39] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163
Google Scholar
[40] Li Z L, Li Q J, Li H Y, Yue L, Zhao D L, Tian F Y, Dong Q, Zhang X T, Jin X L, Zhang L J, Liu R, Liu B B 2022 Adv. Funct. Mater. 32 2108636
Google Scholar
[41] Lucovsky G, White R M, Benda J A, Revelli J F 1973 Phys. Rev. B 7 3859
Google Scholar
[42] Cingolani A, Lugara M, Scamarcio G, Lévy F 1987 Solid State Commun. 62 121
Google Scholar
[43] Roubi L, Carlone C 1988 Phys. Rev. B 37 6808
Google Scholar
[44] Neal S N, Li S, Birol T, Musfeldt J L 2021 npj 2D Mater. Appl. 5 45
[45] Ibáñez J, Woźniak T, Dybala F, Oliva R, Hernández S, Kudrawiec R 2018 Sci. Rep. 8 12757
Google Scholar
[46] Hong M L, Dai L D, Hu H Y, Zhang X Y, Li C, He Y 2022 J. Mater. Chem. C 10 10541
Google Scholar
[47] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z, Gao C X 2011 J. Appl. Phys. 109 053717
Google Scholar
[48] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓 2022 物理学报 71 096101
Google Scholar
Wang Y, Shao B H, Chen S L, Wang C J, Gao C X 2022 Acta Phys. Sin. 71 096101
Google Scholar
[49] Li Z L, Li Q J, Li H Y, Tian F Y, Du M Y, Fang S X, Liu R, Zhang L J, Liu B B 2022 Small Methods 6 2201044
Google Scholar
-
17-20250893Suppl.pdf
Catalog
Metrics
- Abstract views: 320
- PDF Downloads: 17
- Cited By: 0