搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有磁弹耦合的本征多铁半导体: 单分子层MoTeX(X = F, Cl, Br, I)

高金玮 陈璐 李旭洪 史俊勤 曹腾飞 范晓丽

引用本文:
Citation:

具有磁弹耦合的本征多铁半导体: 单分子层MoTeX(X = F, Cl, Br, I)

高金玮, 陈璐, 李旭洪, 史俊勤, 曹腾飞, 范晓丽

Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers

Gao Jin-Wei, Chen Lu, Li Xu-Hong, Shi Jun-Qin, Cao Teng-Fei, Fan Xiao-Li
PDF
HTML
导出引用
  • 同时具有铁磁性与铁弹性的二维材料为磁性控制提供了全新机制, 即通过切换材料的铁弹态控制磁化方向. 源自半填充3d轨道的大磁矩和自发结构极化, 使单分子层MoTeX(X = F, Cl, Br, I)成为潜在的磁弹性多铁材料. 本文基于第一性原理计算, 系统地研究了单分子层MoTeX(X = F, Cl, Br, I)的铁磁性、铁弹性以及磁弹耦合性质. 计算结果表明单分子层MoTeX为本征半导体, 同时具有铁磁性和铁弹性. 单分子层MoTeX的面内磁晶各向异性能显著, 较高的磁晶各项异性能表明其具有抵抗热扰动的能力, 能在有限温度下维持长程磁有序. 另外, 单分子层MoTeX的易磁化轴均沿着平面内方向. 单分子层MoTeX在铁弹性转变过程中表现出相同幅度但符号相反的平面内磁各向异性能, 意味着面内易磁化轴随铁弹态的转换旋转了90°. 另外, 其铁弹转换势垒(0.180—0.226 eV/atom)适中, 表明单分子层MoTeX在室温下的可逆铁弹性转换和平面内易磁化轴的可逆转换. 本文提出了一种二维本征多铁半导体材料, 为多功能自旋电子器件提供了新候选材料.
    Two-dimensional materials with both ferromagnetism and ferroelasticity present new possibilities for developing spintronics and multifunctional devices. These materials provide a novel method for controlling the direction of the magnetization axis by switching the ferroelastic state, achieving efficient and low-power operation of magnetic devices. Such properties make them a promising candidate for the next generation of non-volatile memory, sensors, and logic devices. By performing the first-principles calculations, the ferromagnetism, ferroelasticity, and magnetoelastic coupling in MoTeX (X=F, Cl, Br, I) monolayers are systematically investigated. The results indicate that the MoTeX monolayers are intrinsic semiconductors holding both ferromagnetism and ferroelasticity. The pronounced in-plane magnetic anisotropy suggests that the MoTeX monolayers can resist thermal disturbances and maintain long-range magnetic order. The Curie temperatures of MoTeX monolayers are 144.75 K, 194.55 K, 111.45 K, and 92.02 K, respectively. Our calculations show that the four MoTeX monolayers possess two stable ferroelastic states, with their easy magnetization axes perpendicular to each other. The ferroelastic transition barriers between the two ferroelastic states of MoTeF, MoTeCl, MoTeBr, MoTeI monolayers are 0.180 eV/atom, 0.200 eV/atom, 0.209 eV/atom, and 0.226 eV/atom, respectively, with their corresponding reversible strains of 54.58%, 46.32%, 43.06%, and 38.12%. These values indicate the potential for reversible magnetic control through reversible ferroelastic transition at room temperature. Owing to their unique magnetoelastic coupling properties, MoTeX monolayers exhibit the ability to control reversible magnetization axis at room temperature, laying the foundation for the development of highly controllable and stable spintronic devices.
  • 图 1  (a) MoTeX (X = F, Cl, Br, I)单层膜的顶视图和(b)侧视图. J1, J2J3分别是最邻近的第一、第二和第三个Mo原子之间的层内磁交换参数; (c)铁磁; (FM)俯视图; (d)— (f) MoTeX单层膜的三种反铁磁(AFM)构型. 橙色、蓝色和绿色的球分别代表Mn, O和X原子

    Fig. 1.  (a) Top and (b) side views of the MoTeX (X = F, Cl, Br, I) monolayers. J1, J2 and J3 are the intralayer magnetic exchange parameters between the first, second and third nearest neighboring Mo atoms, respectively; (c) top views of ferromagnetic (FM); (d)–(f) three antiferromagnetic (AFM) configurations of MoTeX monolayers. The orange, blue and green balls represent Mn, O and X atoms, respectively.

    图 2  单层MoTeX (X = F, Cl, Br, I)的声子谱与AIMD模拟过程的结构和能量波动 (a) MoTeF, (b) MoTeCl, (c) MoTeBr和(d) MoTeI单层的声子谱; (e) 分子动力学模拟开始和结束时原子结构的俯视图和侧视图; (f) MoTeF, MoTeCl, MoTeBr和MoTeI单层膜在300 K, 5 ps下的AIMD模拟过程中总能量的波动

    Fig. 2.  Phonon spectra of (a) MoTeF, (b) MoTeCl, (c) MoTeBr and (d) MoTeI monolayers; (e) top and side views of atomic structures at the start and end of molecular dynamics (MD) simulation; (f) evolution of total energies of MoTeF, MoTeCl, MoTeBr and MoTeI monolayers during AIMD simulation at 300 K for 5 ps.

    图 3  (a) MoTeF, (b) MoTeCl, (c) MoTeBr, (d) MoTeI单层膜杨氏模量随面内角的变化; (e) MoTeF, (f) MoTeCl, (g) MoTeBr, (h) MoTeI单层膜泊松比随面内角的变化

    Fig. 3.  Variations of Young’s modulus of (a) MoTeF, (b) MoTeCl, (c) MoTeBr, and (d) MoTeI monolayers with respect to the in-plane angle. Variations of Poisson’s ratio of (e) MoTeF, (f) MoTeCl, (g) MoTeBr and (h) MoTeI monolayers with respect to the in-plane angle.

    图 4  单层MoTeX (X = F, Cl, Br, I)的能带结构与态密度图 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. 费米能级用0 eV的虚线表示. 红色和蓝色曲线分别表示自旋向上和自旋向下通道. 单层MoTeX (X = F, Cl, Br, I)的总态密度(TDOS)和投影态密度 (e) MoTeF; (f) MoTeCl; (g) MoTeBr; (h) MoTeI

    Fig. 4.  Electronic band structures of MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. Fermi level is denoted by the dashed line at 0 eV. Red and blue curves represent the spin up and spin down channels, respectively. Total density of states (TDOS) and project density of states of MoTeX (X = F, Cl, Br, I) monolayers: (e) MoTeF; (f) MoTeCl; (g) MoTeBr; (h) MoTeI monolayers.

    图 5  MoTeX (X = F, Cl, Br, I)单层膜的投影态密度图 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Fig. 5.  Projected electronic band structures of MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 6  MoTeX (X = F, Cl, Br, I)单层的磁矩和比热随温度的变化 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Fig. 6.  Magnetic moment and specific heat as a function of temperature for MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 7  MoTeX (X = F, Cl, Br, I)单层磁各向异性能 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Fig. 7.  Angular dependence of the MAEs (magnetic anisotropy energy) for the MoTeX (X = F, Cl, Br, I) monolayers along the xy, yz, and xz planes: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 8  (a) MoTeX (X = F, Cl, Br, I)单层的铁弹性转换和磁弹性耦合示意图, 铁弹性开关将使易磁化轴旋转90º, 如红色箭头所示; (b) MoTeX单层膜沿铁弹性过渡路径的相对能量

    Fig. 8.  (a) Schematic diagram showing the ferroelastic switching and coupling between magnetism and ferroelasticity for the MoTeX (X = F, Cl, Br, I) monolayers, the ferroelastic switching will rotate the easy magnetization axis by 90º, as illustrated by the red arrows; (b) relative energy of the MoTeX monolayers along the ferroelastic transition path.

    表 1  MoTeX (X = F, Cl, Br, I)的晶格常数、可逆应变、反铁磁构型相对铁磁构型的能量

    Table 1.  Lattice constant, reversible strain and the relative energies of FM and possible AFM configurations of MoTeX monolayers. The energy of FM configuration is a reference.

    ML a b (|b|/|a|–1)×100% EFM/(meV·Mo–1) EAFM1/(meV·Mo–1) EAFM2/(meV·Mo–1) EAFM3/(meV·Mo–1)
    MoTeF 3.704 5.726 54.58 0 283 270 552
    MoTeCl 3.906 5.715 46.31 0 306 301 509
    MoTeBr 3.992 5.710 43.04 0 361 334 453
    MoTeI 4.124 5.696 38.11 0 390 378 397
    下载: 导出CSV

    表 2  MoTeX (X = F, Cl, Br, I)单层膜的弹性模量和力学性能

    Table 2.  Elastic modulus and mechanical properties of MoTeX (X = F, Cl, Br, I) monolayers.

    ML C11/(N·m–1) C12/(N·m–1) C22/(N·m–1) C66/(N·m–1) Y_max/(N·m–1) Y_min/(N·m–1) μ_max μ_min
    MoTeF 63.412 8.814 89.320 13.750 88.095 41.059 0.504 0.099
    MoTeCl 54.424 5.000 86.926 13.809 86.467 39.404 0.448 0.058
    MoTeBr 50.724 5.294 84.128 13.564 83.576 38.237 0.436 0.063
    MoTeI 49.090 5.157 81.298 13.273 80.756 37.283 0.432 0.063
    下载: 导出CSV

    表 3  MoTeX (X = F, Cl, Br, I)单层膜交换作用路径参数. d1, d2d3是第一, 第二和第三近邻Mo原子之间的距离, θ1, θ2θ3是第一, 第二和第三近邻Mo原子与Te原子之间的夹角

    Table 3.  Parameters along the exchange interaction path of MoTeX (X = F, Cl, Br, I) monolayers. d1, d2 and d3 are the distances between the first, second and third nearest neighboring Mo atoms, and θ1, θ2 and θ3 are the angles formed between the first, second and third nearest neighboring Mo atoms and Te atoms.

    MLd1(Mo-Mo)
    d2(Mo-Mo)
    d3(Mo-Mo)
    θ1(Mo-Te-Mo)θ2(Mo-Te-Mo)θ3(Mo-Te-Mo)
    MoTeF3.704.245.7281.9495.85164.47
    MoTeCl3.904.295.7187.0696.79161.32
    MoTeBr3.994.295.7189.1896.83160.74
    MoTeI4.124.285.6992.4097.05159.54
    下载: 导出CSV

    表 4  MoTeX (X = F, Cl, Br, I)单层的磁交换常数与磁晶各向异性能

    Table 4.  Magnetic exchange constant and magnetocrystalline anisotropy energy of MoTeX (X = F, Cl, Br, I) monolayer.

    ML$ {J}_{1} $/eV$ {J}_{2} $/eV$ {J}_{3} $
    /eV
    E[100]
    /(μeV·atom–1)
    E[010]
    /(μeV·atom–1)
    E[001]
    /(μeV·atom–1)
    Tc
    /K
    MoTeF0.147.72-0.220487782114
    MoTeCl1.856.65-1.700613518195
    MoTeBr3.796.25-5.31091430111
    MoTeI4.766.08-3.930-28216592
    下载: 导出CSV
  • [1]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [2]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A , Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [4]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nature 602 601Google Scholar

    [5]

    Xu S, Jia F, Yu X, Hu S, Gao H, Ren W 2022 Mater. Today Phys. 27 100775Google Scholar

    [6]

    Spaldin N A, Fiebig M 2005 Science 09 391

    [7]

    Hu T, Kan E 2019 Wiley Interdiscip. Rev. - Comput. Mol. Sci. 9 e1409Google Scholar

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [9]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng Ran, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [10]

    Mosendz O, Pisana S, Reiner J W, Stipe B, Weller D 2012 J. Appl. Phys. 11 07B729

    [11]

    Gong C, Li L, Li Z, Ji H, Stem A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [12]

    Xu S, Jia F, Cheng X, Ren W 2021 J. Mater. Chem. C 9 17152Google Scholar

    [13]

    Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt M J, Kumpf C, Schmidt G, Brunner K, Molenkamp L W 2007 Phys. Rev. Lett. 99 077201Google Scholar

    [14]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256Google Scholar

    [15]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416Google Scholar

    [16]

    Shen S Y, Xu X L, Huang B BA, Kou L Z, Dai Y, Ma Y D 2021 Phys. Rev. B 103 144101Google Scholar

    [17]

    Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Falko V, Gorbachev R 2022 Nat. Nanotechnol. 17 390Google Scholar

    [18]

    Abdullahi Y Z, Vatansever Z D, Ersan F, Akinci U, Akturk O U, Akturk E 2021 Phys. Chem. Chem. Phys. 23 6107Google Scholar

    [19]

    Akgenc B, Vatansever E, Ersan F 2021 Phys. Rev. Mater. 5 83403Google Scholar

    [20]

    Abdullahi Y Z, Ersan F, Vatansever Z D, Akturk E, Akturk O U 2020 J. Appl. Phys. 128 113903Google Scholar

    [21]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030Google Scholar

    [22]

    Xiao G, Xiao W Z, Feng Y X, Rong Q Y, Chen Q 2023 Nanoscale 15 17963Google Scholar

    [23]

    Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C, Liu G 2023 Mater. Today Phys. 36 101153Google Scholar

    [24]

    Li Y H, Deng J, Zhang Y F, Jin X, Dong W H, Sun J T, Pan J B, Du S X 2023 npj Comput. Mater. 9 50Google Scholar

    [25]

    Yang H, Song M, Li Y, Guo Y, Han K 2022 Physica E 143 115341Google Scholar

    [26]

    Xu S, Jia F, Zhao G, Wu W, Ren W 2021 J. Mater. Chem. C 9 9130Google Scholar

    [27]

    Feng Y, Wang Z, Liu N, Yang Q 2023 Nanoscale 15 4546Google Scholar

    [28]

    Hu M, Xu S, Liu C, Zhao G, Yu J, Ren W 2020 Nanoscale 12 24237Google Scholar

    [29]

    Xu B, Li S C, Jiang K, Yin J, Liu Z G, Cheng Y C, Zhong W Y 2020 Appl. Phys. Lett. 116 052403Google Scholar

    [30]

    Sun H, Qu Z, Li A, Wan Y, Wu F, Huang C, Kan E 2023 Appl. Phys. Lett. 123 042901Google Scholar

    [31]

    Zeng Y, Gu P, Zhao Z, Zhang B, Lin Z, Peng Y, Li W, Zhao W, Leng Y, Tan P, Yang T, Zhang Z, Song Y, Yang J, Ye Y, Tian K, Hou Y 2022 Adv. Mater. 34 2108847Google Scholar

    [32]

    Zhou J, Xu H, Li Y, Jaramillo R 2018 Nano Lett. 18 7794Google Scholar

    [33]

    Blochl P 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Kresse G, Furthumller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Blochl P E, Forst C J, Schimpl J 2003 Bull. Mater. Sci. 26 33Google Scholar

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [37]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 8 134106

    [38]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [39]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [40]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [41]

    Goodenough J B 1955 Phys. Rev. 100 564Google Scholar

    [42]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [43]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [44]

    Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lulin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A, Phan M H 2023 Adv. Sci. 10 2206842Google Scholar

    [45]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [46]

    Gao Z, Wang Y, Gao J, Cui Z, Zhang X, Shi J, Fan X 2022 Comput. Mater. Sci. 213 111611Google Scholar

    [47]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [48]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020Google Scholar

    [49]

    Pang Z, Ji W, Zhang C, Wang P, Li P 2021 Chem. Phys. Lett. 763 138163Google Scholar

    [50]

    Zhang S, Liu B 2018 Nanoscale. 10 5990Google Scholar

    [51]

    Li W, Li J 2016 Nat. Commun. 7 10843Google Scholar

  • [1] 徐思源, 张召富, 王俊, 刘雪飞, 郭宇铮. MoSi2N4的本征点缺陷以及掺杂特性的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231931
    [2] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究. 物理学报, doi: 10.7498/aps.73.20240134
    [3] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, doi: 10.7498/aps.73.20231229
    [4] 陈崇, 马铭远, 潘峰, 宋成. 磁声耦合: 物理、材料与器件. 物理学报, doi: 10.7498/aps.73.20231908
    [5] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, doi: 10.7498/aps.72.20230528
    [6] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, doi: 10.7498/aps.72.20231229
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, doi: 10.7498/aps.71.20211516
    [8] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, doi: 10.7498/aps.71.20220407
    [9] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, doi: 10.7498/aps.70.20210949
    [10] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, doi: 10.7498/aps.70.20211516
    [11] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [12] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, doi: 10.7498/aps.70.20202132
    [13] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, doi: 10.7498/aps.68.20181648
    [14] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理. 物理学报, doi: 10.7498/aps.67.20180251
    [15] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao. Cu掺杂ZnO磁性能的实验与理论研究. 物理学报, doi: 10.7498/aps.63.157502
    [16] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.113101
    [17] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究. 物理学报, doi: 10.7498/aps.61.057503
    [18] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究. 物理学报, doi: 10.7498/aps.58.2018
    [19] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, doi: 10.7498/aps.57.4857
    [20] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, doi: 10.7498/aps.57.4539
计量
  • 文章访问数:  162
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-08-04
  • 上网日期:  2024-08-29

/

返回文章
返回