Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectroscopic properties and analytical potential energy function of ground and low-lying excited states of BeC moleule

Zhang Ji-Cai Sun Jin-Feng Shi De-Heng Zhu Zun-Lue

Citation:

Spectroscopic properties and analytical potential energy function of ground and low-lying excited states of BeC moleule

Zhang Ji-Cai, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue
PDF
HTML
Get Citation
  • Diatomic molecule BeC has a complex electronic structure with a large number of low-lying excited states that are all strongly bound electronic states. Thus, the BeC molecule has the abundant spectral information. In this work, the potential energy curves and wavefunctions of $ {{\rm{X}}^3} {{\text{Σ}} ^ - } $, ${\rm{A}}^3 {\text{Π}}$, $ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1} {\text{Π}}$ and $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $ states of the BeC molecule are calculated by using the internally contracted multi-reference configuration interaction (MRCI) approach, which is based on the use of a dynamically weighted complete active space self-consistent field (DW-CASSCF) procedure. To improve the reliability and accuracy of calculation, the scalar relativistic corrections and the extrapolation of potential energy to the complete basis set limit are taken into account. On the basis of the calculated potential energy curves and wavefunctions, the spectroscopic constants (Te, Re, ${\omega _{\rm{e}}}$, ${\omega _{\rm{e}}}{x_{\rm{e}}}$, ${\omega _{\rm{e}}}{y_{\rm{e}}}$, Be, ${\alpha _{\rm{e}}}$, and De) and permanent dipole moments of those states are determined, the results of which are in good agreement with the existing available experimental and theoretical values. The obtained permanent dipole moments indicate that the electrons transfer from Be to C and the polarity for molecule is $ {\rm{B}}{{\rm{e}}^{{\text{δ}} + }}{{\rm{C}}^{{\text{δ}} - }}$. The transition properties of the spin-allowed ${\rm{A}}^3 {\text{Π}}$$ {{\rm{X}}^3} {{\text{Σ}} ^ - } $, ${{\rm{c}}^1} {\text{Π}}$$ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1} {\text{Π}}$$ {{\rm{d}}^1}{{\text{Σ}} ^ + } $ transitions are predicted, including the transition dipole moments, Franck-Condon factors, and radiative lifetimes. The radiative lifetimes for the ${\rm{A}}^3 {\text{Π}}$$ {{\rm{X}}^3} {{\text{Σ}} ^ - } $ transitions are predicated to be at a $ {{\text{µ}}\rm{ s}}$ level, and the good agreement with previous theoretical values is found. Radiative lifetimes for ${{\rm{c}}^1} {\text{Π}}$$ {{\rm{b}}^1} {{\text{Δ}} } $ and ${{\rm{c}}^1} {\text{Π}}$$ {{\rm{d}}^1}{{\text{Σ}} ^ + } $ transitions are also evaluated at the levels of $ {{\text{µ}}\rm{ s}}$ and ms, respectively. The PEC for the ground state is fitted into accurate analytical potential energy functions by using the extended-Rydberg potential function.
      Corresponding author: Zhang Ji-Cai, jicaiz@htu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097).
    [1]

    Borodin D, Doerner R, Nishijima D, Kirschner A, Kreter A, Matveev D, Galonska A, Philipps V 2011 J. Nucl. Mater. 415 219Google Scholar

    [2]

    Conn R W, Doerner R P, Won J 1997 Fusion Eng. Des. 37 481

    [3]

    Chen M D, Li X B, Yang J, Zhang Q E, Au C T 2006 Int. J. Mass Spectrom. 253 30Google Scholar

    [4]

    Chen M D, Li X B, Yang J, Zhang Q E 2006 J. Phys. Chem. A 110 4502

    [5]

    Zhang C J 2006 J. Mol. Struc.: Theochem. 759 201Google Scholar

    [6]

    Barker B J, Antonov I O, Merritt J M, Bondybey V E, Heaven M C, Dawes R 2012 J. Chem. Phys. 137 214313Google Scholar

    [7]

    Wright J S, Kolbuszewski M 1993 J. Chem. Phys. 98 9725Google Scholar

    [8]

    Borin A C, Ornellas F R 1993 J. Chem. Phys. 98 8761Google Scholar

    [9]

    da Silva C O, Teixeira F E C, Azevedo, J A T, Da Silva E C, Nascimento M A C 1996 Int. J. Quant. Chem. 60 433Google Scholar

    [10]

    Pelegrini M, Roberto-Neto O, Ornellas F R, Machado F B C 2004 Chem. Phys. Lett. 383 143Google Scholar

    [11]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19036Google Scholar

    [12]

    Koch W, Frenking G, Gauss J, Cremer D, Sawaryn A, Schleyer P V R 1986 J. Am. Chem. Soc. 108 5732Google Scholar

    [13]

    Fioressi S E, Binning Jr R C, Bacelo D E 2014 Chem. Phys. 443 76Google Scholar

    [14]

    Patrick A D, Williams P, Blaisten-Barojas E 2007 J. Mol. Struc.: Theochem. 824 39Google Scholar

    [15]

    Ghouri M M, Yareeda L, Mainardi D S 2007 J. Phys. Chem. A 111 13133Google Scholar

    [16]

    Midda S, Das A K 2004 J. Mol. Spectrosc. 224 1Google Scholar

    [17]

    Borin A C, Ornellas F R 1995 Chem. Phys. 190 43Google Scholar

    [18]

    Borin A C, Ornellas F R A 1995 J. Mol. Struc.: Theochem 335 107Google Scholar

    [19]

    Teberekidis V I, Kerkines I S K, Carsky P, Tsipis C A, Mavridis A 2005 Int. J. Quant. Chem. 102 762Google Scholar

    [20]

    Deskevich M P, Nesbitt D J, Werner H J 2004 J. Chem. Phys. 120 7281Google Scholar

    [21]

    Dawes R, Jasper A W, Tao C, Richmond C, Mukarakate C, Kable S H, Reid S A 2010 J. Phys. Chem. Lett. 1 641Google Scholar

    [22]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [23]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [24]

    Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs

    [25]

    Peterson K A, Wilson A K, Woon D E, Dunning Jr T H 1997 Theor. Chem. Acc. 97 251Google Scholar

    [26]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [27]

    Prascher B P, Woon D E, Peterson K A, Dunning T H, Wilson A K 2011 Theor. Chem. Acc. 128 69Google Scholar

    [28]

    Karton A, Martin J M L. 2006 Theor. Chem. Acc. 115 330Google Scholar

    [29]

    Halkier A, Helgaker T, Jørgesen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

    [30]

    Nakajima T, Hirao K 2000 J. Chem. Phys. 113 7786Google Scholar

    [31]

    Fedorov D G, Nakajima T, Hirao K 2003 J. Chem. Phys. 118 4970Google Scholar

    [32]

    Paulovic J, Nakajima T, Hirao K, Lindh R, Malmqvist P Å 2003 J. Chem. Phys. 119 798Google Scholar

    [33]

    NIST, Atomic Spectra Database, see http://www.nist.gov/pml/data/asd.cfm (2012)

    [34]

    Haris K, Kramida A, 2017 Astrophys. J. Suppl. S. 233 16Google Scholar

    [35]

    LeRoy R J 2010 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario: University of Waterloo)

    [36]

    Herzberg G. 1950 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules(New York: Van Nostrand Reinhold) p658

    [37]

    Murrel J N, Carter S, Farantos S C, Huxley P, Varandas A J C 1984 Molecular Potential Energy Functions (Wiley: Chichester, U. K.) p9

    [38]

    7D-Soft High Technology, Inc. 1st Opt User Manual (V.6.0) Beijing, People’s Republic of China, 2014

  • 图 1  BeC分子5个电子态的势能曲线(1 Hartree = 2625.4984 kJ/mol)

    Figure 1.  Potential energy curves of five states of BeC molecule (1 Hartree = 2625.4984 kJ/mol).

    图 2  BeC分子5个电子态的偶极矩(1 Debye = 3.336 × 10–30 C·m)

    Figure 2.  Dipole moments of five electronic states of BeC(1 Debye = 3.336 × 10–30 C·m).

    图 3  BeC分子基态的Mulliken电荷分布

    Figure 3.  Mulliken population for the ground state BeC molecule.

    图 4  跃迁偶极距曲线

    Figure 4.  Transition dipole moment curves.

    表 1  BeC分子6个态的离解极限关系

    Table 1.  Dissociation relationship of six electronic states of BeC molecule.

    原子态 $ {\text{Λ}}{\text{-}}{\rm S}$态 相对能量/cm–1
    本文 (无Q) 本文 (+Q) 实验值[34]
    Be(1Sg)+C(3Pg) $ {{\rm{X}}^3} {{\text{Σ}} ^ - } $, ${\rm{A}}^3 {\text{Π}}$ 0 0
    Be(1Sg)+C(1Dg) $ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1} {\text{Π}}$, $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $ 10124.12 10169.70 10192.66
    Be(1Sg)+C(1Sg) ${2^1}{{\text{Σ}} ^ + } $ 21679.58 21581.62 21648.03
    DownLoad: CSV

    表 2  BeC分子$ {{\rm{X}}^3}{\text{Σ}} $, ${{\rm{A}}^3}{\text{Π}}$, $ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1} {\text{Π}}$$ {{\rm{d}}^1}{{\text{Σ}} ^ + } $等5个态的光谱参数

    Table 2.  Spectroscopic constants of the five states of BeC molecule.

    Te/cm–1Re/nm${\omega _{\rm{e}}}$/cm–1$ {\omega _{\rm{e}}}{x_{\rm{e}}} $/cm–1102${\omega _{\rm{e}}}$уe/cm–1Be/cm–1$ {10^3}{\alpha _{\rm{e}}}$/cm–1De/eV
    ${{{\rm{X}}^3}{\text{Σ}}^- } $00.1673918.087.35017.871.178315.6442.1873
    Cal. [6]00.1661937.99.61.19
    Cal. [7]00.16939052.04
    Cal. [8]00.16679518.421.1832.39
    Cal. [10]00.168392511.252.14
    Cal. [19]00.16802.04
    ${{\rm{A}}^3}{\text{Π}}$8916.350.1771772.748.692199.891.051828.3671.0777
    Cal. [7]9033.410.17990.92
    Cal. [8]94660.175676414.691.07521.16
    Cal. [10]89610.179187426.261.03
    $ {{\rm{b}}^1}{\text{Δ}} $7823.390.1675933.508.3017.561.171416.7002.4408
    Cal. [7]8872.100.16939042.27
    Cal. [8]87320.16689567.61.17572.63
    $ {{\rm{c}}^1}{\text{Π}} $10909.210.1760834.807.1389.201.055114.3652.0933
    Cal. [7]11291.760.17788181.97
    Cal. [8]116180.17588476.941.06122.24
    $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $12139.140.16698936.2117.553126.981.176416.0001.9060
    Cal. [7]12582.240.16939051.81
    Cal. [8]135790.1679557.31.17322.02
    注: Cal. 为理论计算值.
    DownLoad: CSV

    表 3  ${{\rm{A}}^3}{\text{Π}}$$ {{\rm{X}}^3} {{\text{Σ}} ^ - } $, ${{\rm{c}}^1}{\text{Π}}$$ {{\rm{b}}^1} {{\text{Δ}} } $, $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $${{\rm{c}}^1}{\text{Π}}$跃迁的弗兰克-康登因子

    Table 3.  Franck-condon factor for ${{\rm{A}}^3}{\text{Π}}$$ {{\rm{X}}^3} {{\text{Σ}} ^ - } $, ${{\rm{c}}^1}{\text{Π}}$$ {{\rm{b}}^1}{{\text{Δ}} } $, $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $${{\rm{c}}^1}{\text{Π}}$ transitions.

    $\nu '$—$ \nu ''$FC$\nu '$—$ \nu ''$FC$\nu '$—$ \nu ''$FC$\nu '$—$ \nu ''$FC$\nu '$—$ \nu ''$FC$\nu '$— $ \nu ''$FC
    ${\rm{A}}^3 {\text{Π}}$—${\rm{X}}^3 {\text{Σ}}^-$
    0—00.54390—10.36531—00.30491—20.41431—30.16702—00.1080
    2—10.26602—30.36012—40.22763—20.16543—40.29083—50.2691
    4—20.17634—50.22554—60.29935—30.15615—60.16395—70.3216
    6—30.10706—40.12736—60.13396—70.10526—80.33486—90.1183
    7—40.10957—50.10007—70.16187—90.33427—100.1531
    ${{\rm{c}}^1}{\text{Π}}$ —${{\rm{b}}^1}{\text{Δ}}$
    0—00.62370—10.31531—00.27011—10.17401—20.39991—30.1368
    2—10.26892—30.34702—40.23223—10.15183—20.18033—40.2122
    3—50.29644—20.18944—40.10274—50.10454—60.30424—70.1238
    5—30.16345—50.14355—70.31386—30.12366—40.12686—60.1567
    6—80.29687—40.12897—70.14957—90.26908—50.12198—80.1212
    8—100.23809—110.202510—120.1699
    ${{\rm{d}}^1}{\text{Σ}}$—${{\rm{c}}^1}{\text{Π}}$
    0—00.61640—10.27171—00.32321—10.16931—20.26172—10.4016
    2—30.16992—40.18503—10.39013—20.35133—50.15104—20.2362
    4—30.21564—40.10734—60.10685—30.30145—40.10115—50.1501
    6—40.31096—60.16137—40.12927—50.31757—70.14428—50.1801
    8—60.29458—80.10549—60.21929—70.261210—70.256310—80.2265
    DownLoad: CSV

    表 4  ${\rm{A}}^3 {\text{Π}}$, $ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1}{\text{Π}}$$ {{\rm{d}}^1}{{\text{Σ}} ^ + } $态几个振动能级的辐射寿命

    Table 4.  Radiative lifetime of the vibrational energy levels for ${\rm{A}}^3 {\text{Π}}$, $ {{\rm{b}}^1} {{\text{Δ}} } $, ${{\rm{c}}^1} {\text{Π}}$ and $ {{\rm{d}}^1}{{\text{Σ}} ^ + } $states.

    跃迁辐射寿命$/{{\text{μ}}{\rm{ s}}}$
    $\nu '$ = 0$\nu '$ = 1$\nu '$ = 2$\nu '$ = 3$\nu '$ = 4$\nu '$ = 5$\nu '$ = 6$\nu '$ = 7
    ${\rm{A}}^3 {\text{Π}}$—${{\rm{X}}^3}{{\text{Σ}} ^ - }$14.6614.6414.4613.8212.9912.1611.6511.31
    Cal.[10]14.014.515.6
    ${{\rm{c}}^1} {\text{Π}}$—$ {{\rm{b}}^1} {{\text{Δ}} } $191.10166.59161.38159.48151.88176.09197.32239.85
    ${{\rm{c}}^1} {\text{Π}}$—$ {{\rm{d}}^1}{{\text{Σ}} ^ + } $2730.001010.00630.00460.00380.00330280.00230.00
    DownLoad: CSV

    表 5  BeC分子基态解析势能函数参数值

    Table 5.  The values for the analytic parameters for the ground state of BeC molecule.

    参数C1C2C3C4C5
    参数值4.5847206886.8251733754.9797806622.0123720551.900852427
    参数C6C7C8C9C10
    参数值–5.415648763–6.03351734512.82526525–6.0864348930.939009741
    DownLoad: CSV
  • [1]

    Borodin D, Doerner R, Nishijima D, Kirschner A, Kreter A, Matveev D, Galonska A, Philipps V 2011 J. Nucl. Mater. 415 219Google Scholar

    [2]

    Conn R W, Doerner R P, Won J 1997 Fusion Eng. Des. 37 481

    [3]

    Chen M D, Li X B, Yang J, Zhang Q E, Au C T 2006 Int. J. Mass Spectrom. 253 30Google Scholar

    [4]

    Chen M D, Li X B, Yang J, Zhang Q E 2006 J. Phys. Chem. A 110 4502

    [5]

    Zhang C J 2006 J. Mol. Struc.: Theochem. 759 201Google Scholar

    [6]

    Barker B J, Antonov I O, Merritt J M, Bondybey V E, Heaven M C, Dawes R 2012 J. Chem. Phys. 137 214313Google Scholar

    [7]

    Wright J S, Kolbuszewski M 1993 J. Chem. Phys. 98 9725Google Scholar

    [8]

    Borin A C, Ornellas F R 1993 J. Chem. Phys. 98 8761Google Scholar

    [9]

    da Silva C O, Teixeira F E C, Azevedo, J A T, Da Silva E C, Nascimento M A C 1996 Int. J. Quant. Chem. 60 433Google Scholar

    [10]

    Pelegrini M, Roberto-Neto O, Ornellas F R, Machado F B C 2004 Chem. Phys. Lett. 383 143Google Scholar

    [11]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19036Google Scholar

    [12]

    Koch W, Frenking G, Gauss J, Cremer D, Sawaryn A, Schleyer P V R 1986 J. Am. Chem. Soc. 108 5732Google Scholar

    [13]

    Fioressi S E, Binning Jr R C, Bacelo D E 2014 Chem. Phys. 443 76Google Scholar

    [14]

    Patrick A D, Williams P, Blaisten-Barojas E 2007 J. Mol. Struc.: Theochem. 824 39Google Scholar

    [15]

    Ghouri M M, Yareeda L, Mainardi D S 2007 J. Phys. Chem. A 111 13133Google Scholar

    [16]

    Midda S, Das A K 2004 J. Mol. Spectrosc. 224 1Google Scholar

    [17]

    Borin A C, Ornellas F R 1995 Chem. Phys. 190 43Google Scholar

    [18]

    Borin A C, Ornellas F R A 1995 J. Mol. Struc.: Theochem 335 107Google Scholar

    [19]

    Teberekidis V I, Kerkines I S K, Carsky P, Tsipis C A, Mavridis A 2005 Int. J. Quant. Chem. 102 762Google Scholar

    [20]

    Deskevich M P, Nesbitt D J, Werner H J 2004 J. Chem. Phys. 120 7281Google Scholar

    [21]

    Dawes R, Jasper A W, Tao C, Richmond C, Mukarakate C, Kable S H, Reid S A 2010 J. Phys. Chem. Lett. 1 641Google Scholar

    [22]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [23]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [24]

    Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs

    [25]

    Peterson K A, Wilson A K, Woon D E, Dunning Jr T H 1997 Theor. Chem. Acc. 97 251Google Scholar

    [26]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [27]

    Prascher B P, Woon D E, Peterson K A, Dunning T H, Wilson A K 2011 Theor. Chem. Acc. 128 69Google Scholar

    [28]

    Karton A, Martin J M L. 2006 Theor. Chem. Acc. 115 330Google Scholar

    [29]

    Halkier A, Helgaker T, Jørgesen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

    [30]

    Nakajima T, Hirao K 2000 J. Chem. Phys. 113 7786Google Scholar

    [31]

    Fedorov D G, Nakajima T, Hirao K 2003 J. Chem. Phys. 118 4970Google Scholar

    [32]

    Paulovic J, Nakajima T, Hirao K, Lindh R, Malmqvist P Å 2003 J. Chem. Phys. 119 798Google Scholar

    [33]

    NIST, Atomic Spectra Database, see http://www.nist.gov/pml/data/asd.cfm (2012)

    [34]

    Haris K, Kramida A, 2017 Astrophys. J. Suppl. S. 233 16Google Scholar

    [35]

    LeRoy R J 2010 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario: University of Waterloo)

    [36]

    Herzberg G. 1950 Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules(New York: Van Nostrand Reinhold) p658

    [37]

    Murrel J N, Carter S, Farantos S C, Huxley P, Varandas A J C 1984 Molecular Potential Energy Functions (Wiley: Chichester, U. K.) p9

    [38]

    7D-Soft High Technology, Inc. 1st Opt User Manual (V.6.0) Beijing, People’s Republic of China, 2014

  • [1] LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang. Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [2] Zhu Yu-Hao, Li Rui. Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method. Acta Physica Sinica, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] Hou Qiu-Yu, Guan Hao-Yi, Huang Yu-Lu, Chen Shi-Lin, Yang Ming, Wan Ming-Jie. Electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [4] Hou Qiu-Yu,  Guan Hao-Yi,  Huang Yu-Lu,  Chen Shi-Lin,  Yang Ming,  Wan Ming-Jie. The electronic structures and transition properties of AsH+ cation. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [5] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [6] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [7] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [8] Wu Dong-Lan, Yuan Jin-Hong, Wen Yu-Feng, Zeng Xue-Feng, Xie An-Dong. Spectrum and transition characteristics of low excited state of strontium chloride molecule. Acta Physica Sinica, 2019, 68(3): 033101. doi: 10.7498/aps.68.20181770
    [9] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [10] Zhao Shu-Tao, Liang Gui-Ying, Li Rui, Li Qi-Nan, Zhang Zhi-Guo, Yan Bing. Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule. Acta Physica Sinica, 2017, 66(6): 063103. doi: 10.7498/aps.66.063103
    [11] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [12] Liu Xiao-Jun, Miao Feng-Juan, Li Rui, Zhang Cun-Hua, Li Qi-Nan, Yan Bing. Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule. Acta Physica Sinica, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [13] Li Gui-Xia, Jiang Yong-Chao, Ling Cui-Cui, Ma Hong-Zhang, Li Peng. The characteristics of excited states for HF+ ion under spin-orbit coupling. Acta Physica Sinica, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [14] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [15] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [16] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [17] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [18] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [19] Wei Hong-Yuan, Xiong Xiao-Ling, Liu Guo-Ping, Luo Shun-Zhong. Spectroscopic parameters and potential energy function of the ground state of TiO (X 3 Δr). Acta Physica Sinica, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [20] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
Metrics
  • Abstract views:  9642
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2018
  • Accepted Date:  19 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回