-
In practical applications, flexibility, lightweight, and high performance are the characteristics that polymer-based electromagnetic shielding materials should have. At present, it is still a great challenge to prepare polymer-based electromagnetic shielding materials with excellent conductivity, electromagnetic shielding properties, and mechanical properties. Therefore, in this work, single-walled carbon nanotubes/polyetherimide composite films are prepared by electrostatic spinning and vacuum-assisted filtration through using single-walled carbon nanotubes and polyetherimide as raw materials. By regulating the surface density of single-walled carbon nanotubes, the conductivity of the composite film can be enhanced to 1866 S/cm. For the electromagnetic shielding performance, the total electromagnetic shielding effectiveness of single-walled carbon nanotubes/polyetherimide composite film in Ku band (12–18 GHz) is in a range of 75.78–81.83 dB, which is higher than that of pure single-walled carbon nanotube film (65.19–69.81 dB). This is attributed to the formation of interfaces between the polyetherimide fibers and the single-walled carbon nanotubes, with more interfaces consuming more electromagnetic wave energy for a given range of single-walled carbon nanotube surface densities. For the mechanical properties, the maximum tensile strength and elongation at the break of the single-walled carbon nanotube/polyetherimide film are 1.13 and 1.5 times higher than those of the single-walled carbon nanotube film, with the values of 28.52 MPa and 7.91%, respectively. As the surface density of single-walled carbon nanotubes increases, the interaction between single-walled carbon nanotubes as well as the interaction between polyetherimide fibers and single-walled carbon nanotubes at the interface plays a role in enhancing the mechanical properties of the composite films. The single-walled carbon nanotube/polyetherimide composite films, as an excellent polymer-based electromagnetic shielding composite material, can be used in fields such as the protection of precision electronic instruments and wearable electronic devices.
-
Keywords:
- single-walled carbon nanotube /
- polyetherimide /
- lectrostatic spinning /
- electromagnetic shielding
[1] Qi Q, Ma L, Zhao B, Wang S, Liu X B, Lei Y, Park C B 2020 ACS Appl. Mater. Interfaces 12 36568Google Scholar
[2] Promlok D, Wichaita W, Phongtamrug S, Kaewsaneha C, Sreearunothai P, Suteewong T, Tangboriboonrat P 2024 Prog. Org. Coat. 186 108002Google Scholar
[3] Kulkarni G, Kandesar P, Velhal N, Phadtare V, Jatratkar A, Shinde S K, Kim D-Y, Puri V 2019 Chem. Eng. J. 355 196Google Scholar
[4] Qiao Y S, Shen L Z, Guo Y, Liu J H, Meng S M 2014 Mater. Techn. 30 182Google Scholar
[5] Lai H R, Li W Y, Xu L, Wang X M, Jiao H, Fan Z Y, Lei Z L, Yuan Y 2020 Chem. Eng. J. 400 125322Google Scholar
[6] Ma M, Shao W Q, Chu Q D, Tao W T, Chen S, Shi Y Q, He H W, Zhu Y L, Wang X 2024 J. Mater. Chem. A 12 1617Google Scholar
[7] Ren W, Zhu H X, Yang Y Q, Chen Y H, Duan H J, Zhao G Z, Liu Y Q 2020 Compos. Part B: Eng. 184 107745Google Scholar
[8] Yang G, Zhou L C, Wang M J, Xiang T T, Pan D, Zhu J Z, Su F M, Ji Y X, Liu C T, Shen C Y 2023 Nano Res. 16 11411Google Scholar
[9] Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B 2022 Small Methods 6 2101510Google Scholar
[10] Wang T, Kong W W, Yu W C, Gao J F, Dai K, Yan D X, Li Z M 2021 Nanomicro Lett. 13 162Google Scholar
[11] Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fiber. Polym. 24 771Google Scholar
[12] Si Y F, Jin H H, Zhang Q, Xu D W, Xu R X, Ding A X, Liu D 2022 Ceram. Int. 48 24898Google Scholar
[13] Anand S, Pauline S 2021 Nanotechnology 32 475707Google Scholar
[14] Wang B B, Zhang W Y, Sun J M, Lai C H, Ge S B, Guo H W, Liu Y, Zhang D H 2023 J. Mater. Chem. A 11 8656Google Scholar
[15] Wang C B, Guo Y B, Chen J W, Zhu Y T 2023 Compos. Commun. 37 101444Google Scholar
[16] Yang S, Yan D X, Li Y, Lei J, Li Z M 2021 Ind. Eng. Chem. Res. 60 9824Google Scholar
[17] Jia F F, Lu Z Q, Liu Y Q, Li J Y, Xie F, Dong J Y 2022 ACS Appl. Polym. Mater. 4 6342Google Scholar
[18] Song J W, Xu K J, He J, Ye H J, Xu L X 2023 Polym. Compos. 44 2836Google Scholar
[19] Hu P Y, Lyu J, Fu C, Gong W B, Liao J H, Lu W B, Chen Y P, Zhang X T 2020 ACS Nano 14 688Google Scholar
[20] Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F 2019 Nanomicro Lett. 11 72Google Scholar
[21] Mani D, Vu M C, Lim C S, Kim J B, Jeong T H, Kim H J, Islam M A, Lim J H, Kim K M, Kim S R 2023 Carbon 201 568Google Scholar
[22] Lee E S, Lim Y K, Chun Y S, Wang B Y, Lim D S 2017 Carbon 118 650Google Scholar
[23] Khodadadi Yazdi M, Noorbakhsh B, Nazari B, Ranjbar Z 2020 Prog. Org. Coat. 145 105674Google Scholar
[24] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306Google Scholar
An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306Google Scholar
[25] Zheng X H, Hu Q L, Wang Z Q, Nie W Q, Wang P, Li C L 2021 J. Colloid. Interface Sci. 602 680Google Scholar
[26] Chauhan S, Nikhil Mohan P, Raju K C J, Ghotia S, Dwivedi N, Dhand C, Singh S, Kumar P 2023 Colloid. Surfaces A 673 131811Google Scholar
[27] Wang M M, Tian L, Zhang Q Q, You X, Yang J S, Dong S M 2023 Carbon 202 414Google Scholar
-
-
[1] Qi Q, Ma L, Zhao B, Wang S, Liu X B, Lei Y, Park C B 2020 ACS Appl. Mater. Interfaces 12 36568Google Scholar
[2] Promlok D, Wichaita W, Phongtamrug S, Kaewsaneha C, Sreearunothai P, Suteewong T, Tangboriboonrat P 2024 Prog. Org. Coat. 186 108002Google Scholar
[3] Kulkarni G, Kandesar P, Velhal N, Phadtare V, Jatratkar A, Shinde S K, Kim D-Y, Puri V 2019 Chem. Eng. J. 355 196Google Scholar
[4] Qiao Y S, Shen L Z, Guo Y, Liu J H, Meng S M 2014 Mater. Techn. 30 182Google Scholar
[5] Lai H R, Li W Y, Xu L, Wang X M, Jiao H, Fan Z Y, Lei Z L, Yuan Y 2020 Chem. Eng. J. 400 125322Google Scholar
[6] Ma M, Shao W Q, Chu Q D, Tao W T, Chen S, Shi Y Q, He H W, Zhu Y L, Wang X 2024 J. Mater. Chem. A 12 1617Google Scholar
[7] Ren W, Zhu H X, Yang Y Q, Chen Y H, Duan H J, Zhao G Z, Liu Y Q 2020 Compos. Part B: Eng. 184 107745Google Scholar
[8] Yang G, Zhou L C, Wang M J, Xiang T T, Pan D, Zhu J Z, Su F M, Ji Y X, Liu C T, Shen C Y 2023 Nano Res. 16 11411Google Scholar
[9] Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B 2022 Small Methods 6 2101510Google Scholar
[10] Wang T, Kong W W, Yu W C, Gao J F, Dai K, Yan D X, Li Z M 2021 Nanomicro Lett. 13 162Google Scholar
[11] Li M M, Xu Q Y, Jiang W, Farooq A, Qi Y R, Liu L F 2023 Fiber. Polym. 24 771Google Scholar
[12] Si Y F, Jin H H, Zhang Q, Xu D W, Xu R X, Ding A X, Liu D 2022 Ceram. Int. 48 24898Google Scholar
[13] Anand S, Pauline S 2021 Nanotechnology 32 475707Google Scholar
[14] Wang B B, Zhang W Y, Sun J M, Lai C H, Ge S B, Guo H W, Liu Y, Zhang D H 2023 J. Mater. Chem. A 11 8656Google Scholar
[15] Wang C B, Guo Y B, Chen J W, Zhu Y T 2023 Compos. Commun. 37 101444Google Scholar
[16] Yang S, Yan D X, Li Y, Lei J, Li Z M 2021 Ind. Eng. Chem. Res. 60 9824Google Scholar
[17] Jia F F, Lu Z Q, Liu Y Q, Li J Y, Xie F, Dong J Y 2022 ACS Appl. Polym. Mater. 4 6342Google Scholar
[18] Song J W, Xu K J, He J, Ye H J, Xu L X 2023 Polym. Compos. 44 2836Google Scholar
[19] Hu P Y, Lyu J, Fu C, Gong W B, Liao J H, Lu W B, Chen Y P, Zhang X T 2020 ACS Nano 14 688Google Scholar
[20] Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F 2019 Nanomicro Lett. 11 72Google Scholar
[21] Mani D, Vu M C, Lim C S, Kim J B, Jeong T H, Kim H J, Islam M A, Lim J H, Kim K M, Kim S R 2023 Carbon 201 568Google Scholar
[22] Lee E S, Lim Y K, Chun Y S, Wang B Y, Lim D S 2017 Carbon 118 650Google Scholar
[23] Khodadadi Yazdi M, Noorbakhsh B, Nazari B, Ranjbar Z 2020 Prog. Org. Coat. 145 105674Google Scholar
[24] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306Google Scholar
An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306Google Scholar
[25] Zheng X H, Hu Q L, Wang Z Q, Nie W Q, Wang P, Li C L 2021 J. Colloid. Interface Sci. 602 680Google Scholar
[26] Chauhan S, Nikhil Mohan P, Raju K C J, Ghotia S, Dwivedi N, Dhand C, Singh S, Kumar P 2023 Colloid. Surfaces A 673 131811Google Scholar
[27] Wang M M, Tian L, Zhang Q Q, You X, Yang J S, Dong S M 2023 Carbon 202 414Google Scholar
Catalog
Metrics
- Abstract views: 1183
- PDF Downloads: 19
- Cited By: 0