-
Breathing oscillations as one of the low frequency, large amplitude discharge instabilities have serious influence on the performance and lifetime of Hall thrusters. In order to acquire a better understanding of the breathing-oscillation in the Hall thrusters and provide the effective suppression methods for breathing-oscillation, the excitation mechanism and influence factors of the breathing oscillations are investigated by utilizing the two-zone predator-prey (P-P) model in this paper. The two-zone P-P model divides the discharge channel of Hall thruster into two parts according to the working principle of Hall thruster: one is the near anode zone and the other e is the ionization zone. The model includes the ion radial diffusion effect and electrons-wall interaction effect. The four-order Range-Kuttle method is utilized to solve the nonlinear two-zone P-P model equation. The research results show that the interaction of electrons with the wall has the inhibition effect on the breathing oscillations caused by the energy consumption due to the colliding with discharge channel wall. However, ion radial diffusion effect which is near anode has an excitation effect on the breathing oscillation. The ion and neutral atom dynamic behaviors obviously show the P-P feature in the phase space. In other words, there is a phase difference between the change of ion density and the change of neutral particle density. Relying on the intensity of the ions radial diffusion effect, the mode oscillation frequency and oscillation amplitude of discharge current present non monotonic change trend. More specifically, with the increase of intensity of ion radial diffusion effect, the oscillation frequency first increases and then decreases. However, the discharge peak current first decreases and then increases. Furthermore, the breathing oscillations excitation is irrelevant to the length of ionization zone, and the oscillation frequency increases (oscillation period) with length of ionization zone increasing (decreasing), provided that the length of discharge channel is constant. The research results of this paper will provide support to make clear the excitation mechanism and propose the new method of suppressing the breathing oscillations in the hall thrusters.
-
Keywords:
- Hall thruster /
- breathing oscillations /
- two-zone predator-prey model /
- ions radial diffusion /
- electron-wall interaction
[1] Cusson S E, Dale E T, Jorns B A, Gallimore A D 2019 Phys. Plasmas 26 023506Google Scholar
[2] Brown N P, Walker M L R 2020 Appl. Sci. 10 3775Google Scholar
[3] Choueiri E Y 2001 Phys. Plasmas 8 1411Google Scholar
[4] Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010Google Scholar
[5] Chaplin V H, Jorns B A, Ortega A L, Mikellides I G, Conversano R W, Lobbia R B, Hofer R R 2018 J. Appl. Phys. 124 183302Google Scholar
[6] Choueiri E Y, 2004 J. Propul. Power 20 193Google Scholar
[7] Lopez O A, Mikellides I G, Sekerak M J, Jorns B A 2019 J. Appl. Phys. 125 033302Google Scholar
[8] Wei L Q, Han K Wang C S, Li H, Zhang C H, Yu D R 2012 J. Vac. Sci. Technol. A 30 061304Google Scholar
[9] Romadanov I, Raitses Y, Smolyakov A 2018 Plasma Sources Sci. Technol. 27 094006Google Scholar
[10] Tilinin G N 1977 Soviet Tech. Phys. 206 2900
[11] Fife J M, Martinez-Sanchez M, Szabo J 1997 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Seattle, WA, July 6–9, 1997 p12
[12] Boeuf J P, Garrigues L 1998 J. Appl. Phys. 84 3541Google Scholar
[13] Darnon F, Lyszyk M, Bouchoule A 1997 33rd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit Seattle, WA, July 6–9, 1997 p6–9 AIAA–1997–3051
[14] Barral S, Makowski M, Peradzyński Z, Dudeck M 2005 Phys. Plasmas 12 073504Google Scholar
[15] Chable S, Rogier F 2005 Phys. Plasmas 12 033504Google Scholar
[16] Huang W S, Kamhawi H, Lobbia R B, Brown D 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland OH, July 28–30, 2014, AIAA–2014–3708
[17] Linnell J A, Gallimore A D 2006 Phys. Plasmas 13 093502Google Scholar
[18] Xia G J, Ning Z X, Zhu X M, Wei L Q, Chen S W, Yu D R 2020 J. Propul. Power 36 1Google Scholar
[19] Gascon N, Perot C, Bonhomme G, Caron X, Bechu S, Lasgorceix P, Izrar B, Dudeck M 1999 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Los Angeles, CA, June 20–24, 1999, pAIAA–1999–2427
[20] Gascon N, Barral S, Dudeck M 2003 Phys. Plasmas 10 4123Google Scholar
[21] Yamamoto N, Komurasaki K, Arakawa Y 2005 J. Propul. Power 21 870Google Scholar
[22] Lobbia R B, Gallimore A D 2010 Rev. Sci. Instrum. 81 073503Google Scholar
[23] Tahara H, Imanaka K, Yuge S 2006 Vacuum 80 1216Google Scholar
[24] Raitses Y, Smirnov A, Fisch N J 2007 Appl. Phys. Lett. 90 221502Google Scholar
[25] Granstedt E M, Raitses Y, Fisch N J 2008 J. Appl. Phys. 104 103302Google Scholar
[26] Smirnov A, Raitses Y, Fisch N J 2008 IEEE Trans. Plasma Sci. 36 1998Google Scholar
[27] Tamida T, Nakagawa T, Suga I, Osuga H, Ozaki T, Matsui K 2007 J. Appl. Phys. 102 043304Google Scholar
[28] Barral S, Miedzik, Ahedo E 2008 44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Hartford CT, July 21–23, 2008, pAIAA–2008–4632
[29] Raitses Y, Romadanov I, Simmonds Jacob, Smolyakov A, Kaganovich I 2019 AIAA Propulsion and energy Forum Indianapolis, IN, August 19–22, 2019, AIAA–2019–4078
[30] Yu D R, Wang C S, Wei L Q, Gao C, Yu G 2008 Phys. Plasmas 15 113503Google Scholar
[31] Wei L Q, Ning Z X, Peng E, Yu D R 2010 J. Vac. Sci. Technol. 15 28
[32] Barral S, Miedzik J 2011 J. Appl. Phys. 109 013302Google Scholar
[33] Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar
[34] Yu D R, Wei L Q, Zhao Z Y, Han K, Yan G J 2008 Phys. Plasmas 15 043502Google Scholar
[35] Dale E T, Jorns B A 2019 36th International Electric Propulsion Conference University of Vienna, Austria, September 15–20, 2019 pIEPC–2019–354
[36] Barral S, Ahedo E 2009 Phys. Rev. E 79 046401Google Scholar
[37] Amici R 2019 Ph. D. Dissertation (Pisa: Università di Pisa)
[38] Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 Phys. Plasmas 21 122103Google Scholar
[39] Fabris A L, Young C V, Cappelli M A 2015 J. Appl. Phys. 118 233301Google Scholar
-
图 1 无电子与壁面相互作用时离子径向扩散效应的影响 (a)—(c)近阳极区的中性原子密度、离子密度、电子温度; (d)—(f)电离区的中性原子密度、离子密度、电子温度
Figure 1. Effect of radial diffusion of ions without electron wall interaction: (a)–(c) Neutral atoms density, ion density, and electron temperature in the near anode zone; (d)–(f) neutral atom density, ion density, and electron temperature in the ionization zone.
-
[1] Cusson S E, Dale E T, Jorns B A, Gallimore A D 2019 Phys. Plasmas 26 023506Google Scholar
[2] Brown N P, Walker M L R 2020 Appl. Sci. 10 3775Google Scholar
[3] Choueiri E Y 2001 Phys. Plasmas 8 1411Google Scholar
[4] Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010Google Scholar
[5] Chaplin V H, Jorns B A, Ortega A L, Mikellides I G, Conversano R W, Lobbia R B, Hofer R R 2018 J. Appl. Phys. 124 183302Google Scholar
[6] Choueiri E Y, 2004 J. Propul. Power 20 193Google Scholar
[7] Lopez O A, Mikellides I G, Sekerak M J, Jorns B A 2019 J. Appl. Phys. 125 033302Google Scholar
[8] Wei L Q, Han K Wang C S, Li H, Zhang C H, Yu D R 2012 J. Vac. Sci. Technol. A 30 061304Google Scholar
[9] Romadanov I, Raitses Y, Smolyakov A 2018 Plasma Sources Sci. Technol. 27 094006Google Scholar
[10] Tilinin G N 1977 Soviet Tech. Phys. 206 2900
[11] Fife J M, Martinez-Sanchez M, Szabo J 1997 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Seattle, WA, July 6–9, 1997 p12
[12] Boeuf J P, Garrigues L 1998 J. Appl. Phys. 84 3541Google Scholar
[13] Darnon F, Lyszyk M, Bouchoule A 1997 33rd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit Seattle, WA, July 6–9, 1997 p6–9 AIAA–1997–3051
[14] Barral S, Makowski M, Peradzyński Z, Dudeck M 2005 Phys. Plasmas 12 073504Google Scholar
[15] Chable S, Rogier F 2005 Phys. Plasmas 12 033504Google Scholar
[16] Huang W S, Kamhawi H, Lobbia R B, Brown D 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland OH, July 28–30, 2014, AIAA–2014–3708
[17] Linnell J A, Gallimore A D 2006 Phys. Plasmas 13 093502Google Scholar
[18] Xia G J, Ning Z X, Zhu X M, Wei L Q, Chen S W, Yu D R 2020 J. Propul. Power 36 1Google Scholar
[19] Gascon N, Perot C, Bonhomme G, Caron X, Bechu S, Lasgorceix P, Izrar B, Dudeck M 1999 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Los Angeles, CA, June 20–24, 1999, pAIAA–1999–2427
[20] Gascon N, Barral S, Dudeck M 2003 Phys. Plasmas 10 4123Google Scholar
[21] Yamamoto N, Komurasaki K, Arakawa Y 2005 J. Propul. Power 21 870Google Scholar
[22] Lobbia R B, Gallimore A D 2010 Rev. Sci. Instrum. 81 073503Google Scholar
[23] Tahara H, Imanaka K, Yuge S 2006 Vacuum 80 1216Google Scholar
[24] Raitses Y, Smirnov A, Fisch N J 2007 Appl. Phys. Lett. 90 221502Google Scholar
[25] Granstedt E M, Raitses Y, Fisch N J 2008 J. Appl. Phys. 104 103302Google Scholar
[26] Smirnov A, Raitses Y, Fisch N J 2008 IEEE Trans. Plasma Sci. 36 1998Google Scholar
[27] Tamida T, Nakagawa T, Suga I, Osuga H, Ozaki T, Matsui K 2007 J. Appl. Phys. 102 043304Google Scholar
[28] Barral S, Miedzik, Ahedo E 2008 44th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Hartford CT, July 21–23, 2008, pAIAA–2008–4632
[29] Raitses Y, Romadanov I, Simmonds Jacob, Smolyakov A, Kaganovich I 2019 AIAA Propulsion and energy Forum Indianapolis, IN, August 19–22, 2019, AIAA–2019–4078
[30] Yu D R, Wang C S, Wei L Q, Gao C, Yu G 2008 Phys. Plasmas 15 113503Google Scholar
[31] Wei L Q, Ning Z X, Peng E, Yu D R 2010 J. Vac. Sci. Technol. 15 28
[32] Barral S, Miedzik J 2011 J. Appl. Phys. 109 013302Google Scholar
[33] Wei L Q, Li W B, Ding Y J, Yu D R 2018 Plasma Sci. Technol. 20 075502Google Scholar
[34] Yu D R, Wei L Q, Zhao Z Y, Han K, Yan G J 2008 Phys. Plasmas 15 043502Google Scholar
[35] Dale E T, Jorns B A 2019 36th International Electric Propulsion Conference University of Vienna, Austria, September 15–20, 2019 pIEPC–2019–354
[36] Barral S, Ahedo E 2009 Phys. Rev. E 79 046401Google Scholar
[37] Amici R 2019 Ph. D. Dissertation (Pisa: Università di Pisa)
[38] Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 Phys. Plasmas 21 122103Google Scholar
[39] Fabris A L, Young C V, Cappelli M A 2015 J. Appl. Phys. 118 233301Google Scholar
Catalog
Metrics
- Abstract views: 3188
- PDF Downloads: 77
- Cited By: 0