Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source

Cui Sui-Han Zuo Wei Huang Jian Li Xi-Teng Chen Qiu-Hao Guo Yu-Xiang Yang Chao Wu Zhong-Can Ma Zheng-Yong Fu Jin-Yu Tian Xiu-Bo Zhu Jian-Hao Wu Zhong-Zhen

Citation:

High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source

Cui Sui-Han, Zuo Wei, Huang Jian, Li Xi-Teng, Chen Qiu-Hao, Guo Yu-Xiang, Yang Chao, Wu Zhong-Can, Ma Zheng-Yong, Fu Jin-Yu, Tian Xiu-Bo, Zhu Jian-Hao, Wu Zhong-Zhen
PDF
HTML
Get Citation
  • Plasma simulation is important in studying the plasma discharge systematically, especially the anode layer ion source which has the complex geometrical characteristics of the discharge structure. However, owing to the complex solution domain formed by the geometric profile of the anode and cathode, the traditional simulation models show extremely small computational efficiency and poor convergence. This work presents a separate simulation for the ion source structure and the plasma discharge, separately, where the cathode geometric parameters (including the size, the shape and the relative position of the inner and outer cathodes) are simplified into two magnetic mirror parameters (the magnetic mirror ratio Rm and the magnetic induction intensity in the center of the magnetic mirror B 0), and then a high-efficient particle-in-cell/Monte Carlo collision (PIC/MCC) model is established to improve the computational efficiency and stability of the plasma simulation later. As a result, the convergence time of the plasma simulation is shortened significantly from 1.00 μs to 0.45 μs, and by which the influences of the geometrical characteristics of the discharge structure on the plasma properties are systematically studied. The simulation results reveal that magnetic mirror with Rm = 2.50 and B 0 = 36 mT can best confine the plasma in the central area between the inner cathode and outer cathode. When the discharge center of the plasmacoincides with the magnetic mirror center, the anode layer ion source presents both high density output of ion beam current and significantly reduced cathode etching, suggesting that the best balance is obtained between the output and cathode etching.
      Corresponding author: Wu Zhong-Zhen, wuzz@pku.edu.cn
    • Funds: Project supported by the Science and Technology Research Plan of Shenzhen, China (Grant Nos. SGDX20201103095406024, JSGG20191129112631389), the Sustainable Supporting Funds for Colleges and Unversities in 2022, China (Grant No. 20220810143642004), the Research Start-up Fund of Introducing Talent of Peking University Shenzhen Graduate School, China (Grant No. 1270110273), and the Postdoctoral Research Fund Project after Outbound of Shenzhen, China (Grant No. 2129933651).
    [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lee S, Kim J K, Kim D G 2012 Rev. Sci. Instrum. 83 02B703Google Scholar

    [4]

    Lieberman M A 1989 J. Appl. Phys. 66 2926Google Scholar

    [5]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [6]

    Birdsall C K 1991 IEEE Trans Plasma Sci. 19 65Google Scholar

    [7]

    Costin C, Marques L, Popa G, Gousset G 2005 Plasma Sources Sci. Technol. 14 168Google Scholar

    [8]

    Wood B P 1993 J. Appl. Phys. 73 4770Google Scholar

    [9]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 203302Google Scholar

    [10]

    Raadu M A, Axnas I, Gudmundsson J T, Huo C, Brenning N 2011 Plasma Sources Sci. Technol. 20 065007Google Scholar

    [11]

    Boeuf J P, Chaudhury B 2013 Phys. Rev. Lett. 111 155005Google Scholar

    [12]

    Shah M, Chaudhury B, Bandyopadhyay M, Chakraborty A 2020 Fusion Eng. Des. 151 111402Google Scholar

    [13]

    Mattox D M 2001 Plat. Surf. Finish. 88 74

    [14]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D:Appl. Phys. 42 194018Google Scholar

    [15]

    Kim H C, Iza F, Radmilovíc-Radjenovíc M, Lee J K 2005 J. Phys. D: Appl. Phys. 38 R283Google Scholar

    [16]

    Geng S F, Qiu X M, Cheng C M, Chu P K, Tang D L 2012 Phys. Plasmas 19 043507Google Scholar

    [17]

    Gui B, Yang L, Zhou H, Luo S, Xu J, Ma Z, Zhang Y 2022 Vacuum 200 111065Google Scholar

    [18]

    冉彪, 李刘合 2018 真空 55 51Google Scholar

    Ran B, Li L H 2018 Vacuum 55 51Google Scholar

    [19]

    Jiang Y, Tang H, Ren J, Li M, Cao J 2018 J. Phys. D:Appl. Phys 51 035201Google Scholar

    [20]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas. 15 104501Google Scholar

    [21]

    谢树艺 2012 工程数学矢量分析与场论 (第4卷) (北京: 高等教育出版社) 第29—35页

    Xie S Y 2012 Vector Analysis and Field Theory in Engineering Mathematics (Vol. 4) (Beijing: Higher Education Press) pp29–35 (in Chinese)

    [22]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A:Vac. Surf. Films 5 2276Google Scholar

    [23]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 223Google Scholar

    [24]

    弗朗西斯 F. 陈 著 (林光海 译) 1980 等离子体物理学导论(北京: 科学出版社) 第5—7页

    Francis F. Chen(translated by Lin G H)1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [25]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [26]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. 38 2131Google Scholar

    [27]

    Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma. Sources. Sci. T. 29 025016Google Scholar

    [28]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data. 17 1285Google Scholar

    [29]

    Yu W, Zhang L Z, Wang J L, Han L, Fu G S 2001 J. Phys. D: Appl. Phys. 34 3349Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [31]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [32]

    宮文英 2009 硕士学位论文 (成都: 电子科技大学)

    Gong W Y 2009 M. S. Thesis (Chengdu: University of Elecdtronic Science and Technology of China) (in Chinese)

    [33]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Ricky K Y Fu, Tian X B, Paul K Chu, Wu Z Z 2022 J. Phys. D: Appl. Phys. 55 325203Google Scholar

    [34]

    王忆锋, 唐利斌 2010 红外技术 32 213Google Scholar

    Wang Y F, Tang L B 2010 Infrared Tech. 32 213Google Scholar

    [35]

    Olesik J, Całusiński B 1994 Thin Solid Films 238 271Google Scholar

    [36]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [37]

    陈志国 2021 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Chen Z G 2021 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

  • 图 1  磁镜模型及检验粒子MC模型示意图

    Figure 1.  Schematic diagram of the magnetic mirror model and test particle MC model.

    图 2  复杂求解域的高效PIC/MC模型示意图

    Figure 2.  Schematic diagram high-efficient PIC/MC model for complex solution domain.

    图 3  B0 = 36 mT时, 不同dmag对应分析线α上磁感应强度

    Figure 3.  Magnetic induction intensity on the analytical line α at different dmag with B0 = 36 mT.

    图 4  B0 = 36 mT时, 不同磁镜比Rm对应的磁场分布(a)和0.5 μs检验电子数密度分布(b)

    Figure 4.  Distribution of magnetic field (a) and test-electron density of 0.5 μs (b) at different magnetic mirror ratio Rm with B0 = 36 mT

    图 5  电子逃逸率、检验电子数密度峰值、输出离子束流密度及输出离子数/阴极溅射离子数随Rm的变化

    Figure 5.  Evolution tendency of the electron escape rate, the maximum test-electron density, the output ion beam density, and the ratio of the output ions to the sputtering ions with Rm.

    图 6  Rm = 2.50时, 不同Bm大小分析线α上磁感应强度

    Figure 6.  Magnetic induction intensity on the analytical line α at different Bm with Rm = 2.50.

    图 7  Rm = 2.50时, 不同B0对应的磁场分布(a)和0.5 μs检验电子数密度分布(b)

    Figure 7.  Distribution of magnetic field (a) and test-electron density of 0.5 μs (b) at different magnetic mirror ratio B0 with Rm = 2.50

    图 8  电子逃逸率、检验电子数密度峰值、输出离子束流密度及输出离子数/阴极溅射离子数随B0变化

    Figure 8.  Evolution tendency of the electron escape rate, the maximum test-electron density, the output ion beam density, and the ratio of the output ions to the sputtering ions with B0.

    图 9  优化的阴极结构对应的磁场分布(a)及检验电子密度分布(b)

    Figure 9.  Distribution of the magnetic field (a) and the test-electron density (b) under the optimized cathode structures.

    图 10  不同模型求出的等离子体密度分布演变过程 (a) 高效PIC/MC模型; (b) 传统PIC/MC模型

    Figure 10.  Evolution process of the plasma density simulated by the different model: (a) High-efficient PIC/MC model; (b) traditional PIC/MC model.

    图 11  不同hac对应的密度分布及电势分布 (a)离子密度分布; (b)电子密度分布; (c)电势分布

    Figure 11.  Corresponding density distribution and potential distribution of different hac: (a) Distribution of ion density; (b) distribution of electron density; (c) distribution of potential.

    图 12  不同dac对应的密度分布及电势分布 (a)离子密度分布; (b)电子密度分布; (c)电势分布

    Figure 12.  Corresponding density distribution and potential distribution of different dac: (a) Distribution of ion density; (b) distribution of electron density; (c) distribution of potential.

    表 1  电子与背景Ar原子碰撞类型[28]

    Table 1.  Reactions of Ar discharge involving electrons[28].

    反应方程式反应速率系数kr/(m3⋅s–1 )反应能量阈值/eV反应类型
    e + Ar → Ar + e$2.336 \times {10^{ - 14} }{T_{\text{e} } }^{1.609} \times \exp \big[ {0.0618{ {\left( {\ln {T_{\text{e} } } } \right)}^2} - 0.1171{ {\left( {\ln {T_{\text{e} } } } \right)}^3} } \big]$弹性碰撞
    e + Ar → Ar+ + 2e$2.34 \times {10^{ - 14} }{T_{\text{e} } }^{0.59} \times \exp \left( { - 17.44/{T_{\text{e} } } } \right)$15.76电离碰撞
    DownLoad: CSV

    表 2  Ar+离子与背景Ar原子碰撞类型[28]

    Table 2.  Reactions of Ar discharge involving Ar+[28]

    反应方程式反应类型
    Ar+ + Ar → Ar+ + Ar弹性碰撞
    Ar+ + Ar → Ar + Ar+电荷交换
    DownLoad: CSV

    表 3  Ar气放电的主要反应表[28]

    Table 3.  Main reactions of Ar gas discharge[28].

    反应方程式反应速率系数 kr/(m3⋅s–1)反应能量阈值/eV反应类型
    e + Ar → Ar + e$ 2.336 \times {10^{ - 14}}{T_{\text{e}}}^{1.609} \times \exp \left[ {0.0618{{\left( {\ln {T_{\text{e}}}} \right)}^2} - 0.1171{{\left( {\ln {T_{\text{e}}}} \right)}^3}} \right] $弹性碰撞
    e + Ar → Ar+ + 2e$ 2.34 \times {10^{ - 14}}{T_{\text{e}}}^{0.59} \times \exp \left( { - 17.44/{T_{\text{e}}}} \right) $15.76电离碰撞
    e + Ar → Arm + e$ 2.5 \times {10^{ - 15}}{T_{\text{e}}}^{0.74} \times \exp \left( { - 11.56/{T_{\text{e}}}} \right) $11.56激发碰撞
    e + Arm → Ar+ + 2e$ 6.8 \times {10^{ - 15}}{T_{\text{e}}}^{0.67} \times \exp \left( { - 4.2/{T_{\text{e}}}} \right) $4.20激发态电离
    e + Arm → Ar + e$ 4.3 \times {10^{ - 16}}{T_{\text{e}}}^{0.74} $–11.56退激发碰撞
    Ar+ + Ar → Ar+ + Ar硬球模型弹性碰撞
    Ar+ + Ar → Ar + Ar+硬球模型电荷交换
    DownLoad: CSV

    表 4  不同hac对应的等离子体放电特性

    Table 4.  Plasma discharge characteristics at different hac.

    hac/mm阴极溅射离
    子占比/%
    输出离子
    占比/%
    输出离子数/阴
    极溅射离子数
    等离子体峰值
    密度/(1016 m–3)
    放电中心坐标/mm放电面积/mm2
    253.843.80.814.02(31.1, 57.9)209.3
    651.847.00.913.06(31.3, 55.8)188.0
    1040.659.31.461.78(31.6, 54.8)155.0
    1434.465.61.900.68(32.1, 53.6)90.0
    1824.375.63.100.34(32.8, 52.9)38.4
    DownLoad: CSV

    表 5  不同dac对应的等离子体特性

    Table 5.  Plasma properties at different dac.

    dac/mm阴极溅射离
    子占比/%
    输出离子
    占比/%
    输出离子数/阴
    极溅射离子数
    内外阴极溅
    射强度比
    等离子体峰值密
    度/(1016 m–3)
    放电中心
    坐标/mm
    放电面积/mm2
    251.047.50.931.383.72(31.3, 55.9)208.4
    648.150.91.061.193.26(31.4, 55.4)199.5
    1040.659.31.460.991.78(31.6, 54.8)155.0
    1432.867.22.050.740.72(31.7, 53.8)103.1
    1825.774.22.880.520.26(33.4, 53.4)14.2
    DownLoad: CSV
  • [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lee S, Kim J K, Kim D G 2012 Rev. Sci. Instrum. 83 02B703Google Scholar

    [4]

    Lieberman M A 1989 J. Appl. Phys. 66 2926Google Scholar

    [5]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [6]

    Birdsall C K 1991 IEEE Trans Plasma Sci. 19 65Google Scholar

    [7]

    Costin C, Marques L, Popa G, Gousset G 2005 Plasma Sources Sci. Technol. 14 168Google Scholar

    [8]

    Wood B P 1993 J. Appl. Phys. 73 4770Google Scholar

    [9]

    Zheng B C, Meng D, Che H L, Lei M K 2015 J. Appl. Phys. 117 203302Google Scholar

    [10]

    Raadu M A, Axnas I, Gudmundsson J T, Huo C, Brenning N 2011 Plasma Sources Sci. Technol. 20 065007Google Scholar

    [11]

    Boeuf J P, Chaudhury B 2013 Phys. Rev. Lett. 111 155005Google Scholar

    [12]

    Shah M, Chaudhury B, Bandyopadhyay M, Chakraborty A 2020 Fusion Eng. Des. 151 111402Google Scholar

    [13]

    Mattox D M 2001 Plat. Surf. Finish. 88 74

    [14]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van Aeken K, Buyle G, Depla D 2009 J. Phys. D:Appl. Phys. 42 194018Google Scholar

    [15]

    Kim H C, Iza F, Radmilovíc-Radjenovíc M, Lee J K 2005 J. Phys. D: Appl. Phys. 38 R283Google Scholar

    [16]

    Geng S F, Qiu X M, Cheng C M, Chu P K, Tang D L 2012 Phys. Plasmas 19 043507Google Scholar

    [17]

    Gui B, Yang L, Zhou H, Luo S, Xu J, Ma Z, Zhang Y 2022 Vacuum 200 111065Google Scholar

    [18]

    冉彪, 李刘合 2018 真空 55 51Google Scholar

    Ran B, Li L H 2018 Vacuum 55 51Google Scholar

    [19]

    Jiang Y, Tang H, Ren J, Li M, Cao J 2018 J. Phys. D:Appl. Phys 51 035201Google Scholar

    [20]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas. 15 104501Google Scholar

    [21]

    谢树艺 2012 工程数学矢量分析与场论 (第4卷) (北京: 高等教育出版社) 第29—35页

    Xie S Y 2012 Vector Analysis and Field Theory in Engineering Mathematics (Vol. 4) (Beijing: Higher Education Press) pp29–35 (in Chinese)

    [22]

    Rossnagel S M, Kaufman H R 1987 J. Vac. Sci. Technol. A:Vac. Surf. Films 5 2276Google Scholar

    [23]

    Rossnagel S M, Kaufman H R 1988 J. Vac. Sci. Technol. A:Vac. Surf. Films 6 223Google Scholar

    [24]

    弗朗西斯 F. 陈 著 (林光海 译) 1980 等离子体物理学导论(北京: 科学出版社) 第5—7页

    Francis F. Chen(translated by Lin G H)1980 Introduction to Plasma Physics (Beijing: Science Press) pp5–7 (in Chinese)

    [25]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [26]

    Shidoji E, Ohtake H, Nakano N, Makabe T 1999 Jpn. J. Appl. Phys. 38 2131Google Scholar

    [27]

    Chen L, Cui S H, Tang W, Zhou L, Li T, Liu L, An X, Wu Z, Ma Z, Lin H 2020 Plasma. Sources. Sci. T. 29 025016Google Scholar

    [28]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data. 17 1285Google Scholar

    [29]

    Yu W, Zhang L Z, Wang J L, Han L, Fu G S 2001 J. Phys. D: Appl. Phys. 34 3349Google Scholar

    [30]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [31]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [32]

    宮文英 2009 硕士学位论文 (成都: 电子科技大学)

    Gong W Y 2009 M. S. Thesis (Chengdu: University of Elecdtronic Science and Technology of China) (in Chinese)

    [33]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Ricky K Y Fu, Tian X B, Paul K Chu, Wu Z Z 2022 J. Phys. D: Appl. Phys. 55 325203Google Scholar

    [34]

    王忆锋, 唐利斌 2010 红外技术 32 213Google Scholar

    Wang Y F, Tang L B 2010 Infrared Tech. 32 213Google Scholar

    [35]

    Olesik J, Całusiński B 1994 Thin Solid Films 238 271Google Scholar

    [36]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [37]

    陈志国 2021 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Chen Z G 2021 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

  • [1] Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie. Dynamics and impurity spectral characteristics of coaxial gun discharge plasma. Acta Physica Sinica, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen. Cathode etching phenomenon of high beam-anode ion source and its elimination measures. Acta Physica Sinica, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [4] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [5] Zhou Xiong-Feng, Chen Bin, Liu Kun. Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field. Acta Physica Sinica, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [6] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [7] Yu Xin, Qi Liang-Wen, Zhao Chong-Xiao, Ren Chun-Sheng. Comparative study of positive and negative pulsed discharge plasma characteristics of coaxial gun. Acta Physica Sinica, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [8] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [9] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [10] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [11] Wang Yu, Li Xiao-Dong, Yu Liang, Yan Jian-Hua. Numerical simulation study on characteristics of gliding arc discharge. Acta Physica Sinica, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [12] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [13] Hu Jia, Xu Yi-Jun, Ye Chao. CHF3 dual-frequency capacitively coupled plasma. Acta Physica Sinica, 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [14] Wang Dao-Yong, Ma Jin-Xiu, Li Yi-Ren, Zhang Wen-Gui. Sheath structure of a hot-cathode in plasma. Acta Physica Sinica, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [15] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [16] Li Han-Ming, Li Gang, Li Ying-Jun, Li Yu-Tong, Zhang Yi, Cheng Tao, Nie Chao-Qun, Zhang Jie. The characteristics of the spectrum emitted from dielectric barrier-discharge plasmas. Acta Physica Sinica, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [17] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [18] Yang Juan, Zhu Liang-Ming, Su Wei-Yi, Mao Gen-Wang. Calculation of the wave reflecting characteristics of magnetized plasma surface. Acta Physica Sinica, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [19] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [20] Chen Gang, Pan Bai-Liang, Yao Zhi-Xin. Parametric study of plasma resistance in gas pulsed discharges. Acta Physica Sinica, 2003, 52(7): 1635-1639. doi: 10.7498/aps.52.1635
Metrics
  • Abstract views:  5112
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2022
  • Accepted Date:  26 January 2023
  • Available Online:  14 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回