Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cathode etching phenomenon of high beam-anode ion source and its elimination measures

Tang Shi-Yi Ma Zi-Qi Zou Yun-Xiao An Xiao-Kai Yang Dong-Jie Liu Liang-Liang Cui Sui-Han Wu Zhong-Zhen

Citation:

Cathode etching phenomenon of high beam-anode ion source and its elimination measures

Tang Shi-Yi, Ma Zi-Qi, Zou Yun-Xiao, An Xiao-Kai, Yang Dong-Jie, Liu Liang-Liang, Cui Sui-Han, Wu Zhong-Zhen
cstr: 32037.14.aps.73.20240494
PDF
HTML
Get Citation
  • High beam-anode layer ion source can produce high-density ions, and has been widely used in plasma cleaning and assisted deposition. However, when increasing the ion-beams, arcing always occurs inside the ion source and serious etching will take place on the cathode, which results in sample pollution especially in long-time cleaning. In this work, two structures are designed, which are magnetic shielding around the anode and sputtering shielding on the top of the inner cathode and outer cathode, respectively. Based on the particle-in-cell/Monte Carlo collision method and test particle Monte Carlo method, the influence of designed structure on the electromagnetic field and the plasma properties of the ion source are studied through self-established simulation technique. The results show that the magnetic shielding around the anode cuts off the magnetic induction line between the cathode and anode, eliminating the arcing condition in the ion source. The sputtering shielding for the cathode uses alumina ceramic because of its extremely low sputtering yield and high insulation performance. Therefore, the sputtering shields can not only resist the ion sputtering, but also shield the electric field on the outer surface of the cathode. As a result, the plasma discharge region is compressed towards the anode and away from the cathode simultaneously, which provides a stronger electric field force directing to the output region for Ar+ ions, and also results in a suppressed cathode etching behavior but an improved Ar+ ion output efficiency. The optimized calculation shows that the best distance from the sputtering shield to the cathode surface is 9 mm. The discharge experiments reveal that the modified ion source can eliminate the inside arcing and provide a clean and strong ion beam with a high efficiency. At the same discharge current, the output efficiency of the modified ion source is 36% higher than that of the original ion source. When used in the plasma cleaning, the glass substrate remains transparent and keeps the original element composition ratio unchanged. The detected Fe content, coming from the cathode sputtering, is only 0.03% after the one-hour plasma cleaning, which is 2 orders of magnitude smaller than that cleaned by the original ion source. The Fe content of the modified ion source is about 0.6% of the original ion source, which is in good agreement with the result of simulation optimization.
      Corresponding author: Cui Sui-Han, cuish@pku.edu.cn ; Wu Zhong-Zhen, wuzz@pku.edu.cn
    • Funds: Project supported by the Shenzhen Science and Technology Research Plan Shenzhen–Hong Kong Research and Development Fund (Grant No. SGDX20201103095406024), the Sustainable Supporting Funds for Colleges and Universities in 2022 (Grant No. 20220810143642004), the National Natural Science Foundation Youth Science Fund (Grant No. 52305174), and the Postdoctoral Research Fund Project after Outbound of Shenzhen, China (Grant No. 6700200201).
    [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lackner J M, Waldhauser W, Schwarz M, Mahoney L, Major B, 2008 Vacuum. 83 302Google Scholar

    [4]

    Lee S, Kim D G 2015 Appl. Sci. Converg. Tec. 24 162Google Scholar

    [5]

    Dudnikov V 2012 Rev. Sci. Instrum. 83 02A713Google Scholar

    [6]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Ricky K Y Fu, Paul K Chu, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [7]

    郭杏元, 曹永盛, 马金鹏 2021 中国专利 CN112575306A

    Guo X Y, Cao Y S, Ma J P 2021 China Patent CN112575306A

    [8]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [9]

    郑军, 周晖, 赵栋才 2019 中国专利 CN108914091B

    Zheng J, Zhou H, Zhao D C 2019 China Patent CN108914091B

    [10]

    王鸣, 陈刚 2020 中国专利 CN109536906A

    Wang M, Chen G 2020 China Patent CN109536906A

    [11]

    Brenning N, Gudmundsson J T, Raadu M A, Petty T J, Minea T, Lundin D 2017 Plasma Sources Sci. Technol. 26 125003Google Scholar

    [12]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 035201Google Scholar

    [13]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas 15 104501Google Scholar

    [14]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [15]

    李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z C, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [16]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285Google Scholar

    [17]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K Chu, Wu Z Z 2022 J. Phys. D. Appl. Phys. 55 325203Google Scholar

    [18]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van A K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 194018Google Scholar

    [21]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [22]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen S, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [24]

    Park D H, Kim J H, Ermakov Y 2008 Rev. Sci. Instrum. 79 02B312Google Scholar

    [25]

    Gui B H, Yang L, Zhou H, Luo S L, Xu J, Ma Z J, Zhang Y S 2022 Vacuum 200 111065Google Scholar

    [26]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

  • 图 1  阳极层离子源阳极环绕磁屏蔽罩和内外阴极溅射屏蔽板的设置示意图

    Figure 1.  Diagram of the anode layer ion source with the magnetic shields surrounding the anode and sputtering shields on the top of the inner and outer cathodes.

    图 2  无(a)和有(b)阳极环绕磁屏蔽罩的阳极层离子源的电磁场分布

    Figure 2.  Electromagnetic field distribution of anode-layer ion source (a) without and (b) with magnetic shields surrounding the anode.

    图 3  无(a)和有(b)内外阴极溅射屏蔽板的阳极层离子源的电势与等离子体密度分布

    Figure 3.  Distribution of potential and plasma density of anode-layer ion source (a) without and (b) with the sputtering shields on the top of the inner and outer cathodes.

    图 4  不同溅射屏蔽板与内外阴极间距的阳极层离子源的电势与等离子体密度分布 (a) d = 7 mm; (b) d = 9 mm; (c) d = 11 mm; (d) d = 13 mm

    Figure 4.  Distribution of potential and plasma density of anode-layer ion source with different distance between the sputtering shield and the cathode: (a) d = 7 mm; (b) d = 9 mm; (c) d = 11 mm; (d) d = 13 mm.

    图 5  参与阴极溅射、溅射屏蔽板阻挡与输出Ar+离子比例(a)和能量(b)

    Figure 5.  (a) Ratio and (b) energy of the Ar+ ions participate in the cathode sputtering, blocking by the sputtering shield and output.

    图 6  (a) Ar+离子对阴极材料(Fe)和屏蔽板材料(Al2O3)的溅射产额; (b) 相同条件下阴极和溅射屏蔽板刻蚀产生的Fe, Al和O原子含量(归一化)

    Figure 6.  (a) Sputtering yield of Ar+ ion to the cathode material (Fe) and shield material (Al2O3); (b) the normalized atomic content of Fe, Al, and O generated by the cathode and sputtering shields under the same conditions

    图 7  归一化的Ar+离子输出效率和Fe原子沉积总量

    Figure 7.  Normalized Ar+ ion output efficiency and Fe atom deposition quantity.

    图 8  改进阳极层离子源的(a)结构图、(b)实物图和(c)辉光图; 改进前后离子源在恒压放电条件的(d)放电电流和(e)基片电流密度; 改进前后离子源在恒流放电条件下的(f)基片电流密度

    Figure 8.  (a) Structural diagram, (b) the physical picture and (c) the glow picture of the modified anode-layer ion source; (d) the discharge current and (e) the substrate current density of the original and the modified ion source under the constant discharge voltage; (f) the substrate current density of the original and the modified ion source under the constant discharge current.

    图 9  空白玻璃基片和经改进前后离子源清洗1 h的玻璃基片的(a)实物图和(b)透过率; (c)原离子源与(d) 改进离子源清洗的玻璃基片表面Fe元素分布的EDS检测结果

    Figure 9.  (a) physical pictures and (b) transmission of blank glass substrates and glass substrates after cleaning by the original and modified ion sources for 1 h; EDS detection results of Fe element distribution on glass substrate surface after cleaning by (c) the original ion source and the (d) modified ion source.

    表 1  Ar气放电的主要反应表[16]

    Table 1.  Main reactions of Ar gas discharge[16].


    反应方程式 反应速率系数 kr/(m3⋅s–1) 反应能量
    阈值/eV
    反应类型
    1 e + Ar → Ar + e $ 2.336 \times {10^{ - 14}}{T_{\text{e}}}^{1.609} \exp [ {0.0618{{( {\ln {T_{\text{e}}}} )}^2} - 0.1171{{ ( {\ln {T_{\text{e}}}} )}^3}} ] $ 弹性碰撞
    2 e + Ar → Ar+ + 2e $ 2.34 \times {10^{ - 14}}{T_{\text{e}}}^{0.59} \exp \left( { - 17.44/{T_{\text{e}}}} \right) $ 15.76 电离碰撞
    3 e + Ar → Arm + e $ 2.5 \times {10^{ - 15}}{T_{\text{e}}}^{0.74} \exp \left( { - 11.56/{T_{\text{e}}}} \right) $ 11.56 激发碰撞
    4 e + Arm → Ar+ + 2e $ 6.8 \times {10^{ - 15}}{T_{\text{e}}}^{0.67} \exp \left( { - 4.2/{T_{\text{e}}}} \right) $ 4.2 激发态电离
    5 e + Arm → Ar + e $ 4.3 \times {10^{ - 16}}{T_{\text{e}}}^{0.74} $ –11.56 退激发碰撞
    6 Ar+ + Ar → Ar+ + Ar 硬球碰撞 弹性碰撞
    7 Ar+ + Ar → Ar + Ar+ 硬球碰撞 电荷交换
    DownLoad: CSV

    表 2  等离子体放电特征分析

    Table 2.  Analysis of plasma discharge properties.

    d/mm峰值密度/m–3峰值位置
    坐标/mm
    放电面
    积/mm2
    无溅射屏蔽板1.68×1016(31.5, 52.5)170.25
    76.79×1014(31.0, 50.5)10.25
    92.89×1015(32.0, 51.0)66.00
    118.27×1015(32.0, 52.0)115.00
    131.42×1016(31.5, 52.5)153.75
    DownLoad: CSV

    表 3  检验Fe原子MC模型仿真结果

    Table 3.  Simulation results of the Test Fe atom MC model.

    d/mm 输出的Fe
    原子比例/%
    溅射屏蔽板阻挡
    Fe原子比例/%
    返回阴极的Fe
    原子比例/%
    无溅射
    屏蔽板
    19.4 80.6
    7 0.3 21.1 78.6
    9 0.3 24.5 75.2
    11 0.3 25.8 73.9
    13 0.8 27.3 71.9
    DownLoad: CSV

    表 4  EDS检测结果

    Table 4.  EDS detection results.

    原子百
    分比/%
    空白玻璃
    基片
    原离子源清洗的
    玻璃基片
    改进离子源清洗的
    玻璃基片
    C12.6112.8310.93
    O55.2757.3356.73
    Na7.234.577.23
    Mg1.911.411.97
    Si20.5116.6920.90
    Ca2.462.102.22
    Fe05.080.03
    DownLoad: CSV
  • [1]

    Harper J M E, Cuomo J J, Kaufman H R 1982 J. Vac. Sci. Technol. A 21 737Google Scholar

    [2]

    赵杰, 唐德礼, 程昌明, 耿少飞 2009 核聚变与等离子体物理 29 5Google Scholar

    Zhao J, Tang D L, Cheng C M, Geng S F 2009 Nucl. Fusion. Plasma. Phys. 29 5Google Scholar

    [3]

    Lackner J M, Waldhauser W, Schwarz M, Mahoney L, Major B, 2008 Vacuum. 83 302Google Scholar

    [4]

    Lee S, Kim D G 2015 Appl. Sci. Converg. Tec. 24 162Google Scholar

    [5]

    Dudnikov V 2012 Rev. Sci. Instrum. 83 02A713Google Scholar

    [6]

    Chen L, Cui S H, Tang W, Zhou L, Li T J, Liu L L, An X K, Wu Z C, Ma Z Y, Lin H, Tian X B, Ricky K Y Fu, Paul K Chu, Wu Z Z 2020 Plasma Sources Sci. Technol. 29 025016Google Scholar

    [7]

    郭杏元, 曹永盛, 马金鹏 2021 中国专利 CN112575306A

    Guo X Y, Cao Y S, Ma J P 2021 China Patent CN112575306A

    [8]

    汪礼胜, 唐德礼, 程昌明 2006 核聚变与等离子体物理 26 54Google Scholar

    Wang L S, Tang D L, Cheng C M 2006 Nucl. Fusion. Plasma. Phys. 26 54Google Scholar

    [9]

    郑军, 周晖, 赵栋才 2019 中国专利 CN108914091B

    Zheng J, Zhou H, Zhao D C 2019 China Patent CN108914091B

    [10]

    王鸣, 陈刚 2020 中国专利 CN109536906A

    Wang M, Chen G 2020 China Patent CN109536906A

    [11]

    Brenning N, Gudmundsson J T, Raadu M A, Petty T J, Minea T, Lundin D 2017 Plasma Sources Sci. Technol. 26 125003Google Scholar

    [12]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 035201Google Scholar

    [13]

    Yu D R, Zhang F K, Liu H, Li H, Yan G J, Liu J Y 2008 Phys. Plasmas 15 104501Google Scholar

    [14]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [15]

    李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 物理学报 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z C, Ma Z Y, Fu R K Y, Tian X B, Chu P K, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [16]

    Lennon M A, Bell K L, Gilbody H B, Hughes J G, Kingston A E, Murray M J, Smith F J 1988 J. Phys. Chem. Ref. Data 17 1285Google Scholar

    [17]

    Cui S H, Chen Q H, Guo Y X, Chen L, Jin Z, Li X T, Yang C, Wu Z C, Su X Y, Ma Z Y, Fu R K Y, Tian X B, Chu P K Chu, Wu Z Z 2022 J. Phys. D. Appl. Phys. 55 325203Google Scholar

    [18]

    Bultinck E, Kolev I, Bogaerts A, Depla D 2008 J. Appl. Phys. 103 013309Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Bogaerts A, Bultinck E, Kolev I, Schwaederle L, Van A K, Buyle G, Depla D 2009 J. Phys. D: Appl. Phys. 42 194018Google Scholar

    [21]

    崔岁寒, 郭宇翔, 陈秋皓, 金正, 杨超, 吴忠灿, 苏雄宇, 马正永, 田修波, 吴忠振 2022 物理学报 71 055203Google Scholar

    Cui S H, Guo Y X, Chen Q H, Jin Z, Yang C, Wu Z C, Su X Y, Ma Z Y, Tian X B, Wu Z Z 2022 Acta Phys. Sin. 71 055203Google Scholar

    [22]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Tech. 205 591Google Scholar

    [23]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H, Wu Z Z, Xiao S, Chen S, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [24]

    Park D H, Kim J H, Ermakov Y 2008 Rev. Sci. Instrum. 79 02B312Google Scholar

    [25]

    Gui B H, Yang L, Zhou H, Luo S L, Xu J, Ma Z J, Zhang Y S 2022 Vacuum 200 111065Google Scholar

    [26]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

  • [1] Wang Cheng-Rong, Tang Li, Zhou Yan-Ping, Zhao Xiang, Liu Chang-Jun, Yan Li-Ping. Switchable and optically transparent ultrawide stopband frequency selective surface for electromagnetic shielding. Acta Physica Sinica, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] Wang Tian-Ci, Xia Qian-Shan, Huang Xin-Zuo, Wang Yong-Zheng, Liu Bin, Zhang Jin-Tong, Li Tao. Preparation and properties of single-walled carbon nanotube/polyetherimide electromagnetic shielding film. Acta Physica Sinica, 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [3] Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun. A method of real-time monitoring beam output stability of intense pulsed ion beam. Acta Physica Sinica, 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [4] Cui Sui-Han, Zuo Wei, Huang Jian, Li Xi-Teng, Chen Qiu-Hao, Guo Yu-Xiang, Yang Chao, Wu Zhong-Can, Ma Zheng-Yong, Fu Jin-Yu, Tian Xiu-Bo, Zhu Jian-Hao, Wu Zhong-Zhen. High-efficient particle-in-cell/Monte Carlo model for complex solution domain andsimulation of anode layer ion source. Acta Physica Sinica, 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [5] Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang. Improvement of fundamental frequency performance of SGII-UP laser facility. Acta Physica Sinica, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [6] Li Zi-Yang, Yang Xiao, Liu Hua-Song, Jiang Yu-Gang, Bai Jin-Lin, Li Shi-Da, Yang Shi-Qi, Su Jian-Zhong. Low optical diffraction random hexagonal structure metallic network conductive films. Acta Physica Sinica, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [7] Zhao Jie, Tang De-Li, Xu Li, Li Ping-Chuan, Zhang Fan, Li Jian, Gui Bing-Yi. Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster. Acta Physica Sinica, 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [8] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [9] Bai Wan-Xin, Li Tian-Le, Guo An-Qi, Cheng Rui-Qi, Jiao Chong-Qing. Analytical theory on electromagnetic shielding effectiveness of infinite conductor plate with periodic aperture array under plane wave illumination. Acta Physica Sinica, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [10] Kan Yong, Yan Li-Ping, Zhao Xiang, Zhou Hai-Jing, Liu Qiang, Huang Ka-Ma. Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures. Acta Physica Sinica, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [11] Gao Yang-Fu, Song Yi-Xu, Sun Xiao-Min. An optimization method for ion etching yield modeling based on etching velocity matching. Acta Physica Sinica, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [12] Ren Dan, Du Ping-An, Nie Bao-Lin, Cao Zhong, Liu Wen-Kui. An equivalent approach to modeling aperture array with considering size effect of apertures. Acta Physica Sinica, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [13] Jiao Chong-Qing, Li Yue-Yue. Analytical formulation for electromagnetic leakage from an apertured rectangular cavity. Acta Physica Sinica, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [14] Niu Shuai, Jiao Chong-Qing, Li Lin. Shielding effectiveness of a metal cavity covered by a material with a medium conductivity. Acta Physica Sinica, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [15] Jiao Chong-Qing, Niu Shuai. Shielding effectiveness of an apertured rectangular cavity against the near-field electromagnetic waves. Acta Physica Sinica, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [16] Jiao Chong-Qing, Qi Lei. Electromagnetic coupling and shielding effectiveness of apertured rectangular cavity under plane wave illumination. Acta Physica Sinica, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [17] Liao Qing-Liang, Zhang Yue, Xia Lian-Sheng, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Zhang Huang. Research on intense pulsed emission of carbon nanotube cathode. Acta Physica Sinica, 2007, 56(9): 5335-5340. doi: 10.7498/aps.56.5335
    [18] Wang Sen, Yu Guo-Jun, Gong Jin-Long, Li Qin-Tao, Zhu De-Zhang, Zhu Zhi-Yuan. Etching effects of low energy argon ion beam on porous anodic aluminum oxide membranes. Acta Physica Sinica, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [19] NING ZHAO-YUAN, CHENG SHAN-HUA. ETCHING PROPERTIES OF AMORPHOUS HYDROGENATED CARBON FILMS IN A MULTIPOLE ELECTRON CYCLOTRON RESONANCE OXYGEN PLASMA SYSTEM. Acta Physica Sinica, 1999, 48(10): 1950-1956. doi: 10.7498/aps.48.1950
    [20] Ai Ke-cong, Zhou Li-wei, Ximen Ji-ye. ON THE ABERRATION THEORY FOR WIDE AND NARROW ELECTRON BEAMS IN A COMBINED ELECTROMAGNETIC FOCUSING SPHERICAL CATHODE LENS SYSTEM. Acta Physica Sinica, 1986, 35(9): 1199-1209. doi: 10.7498/aps.35.1199
Metrics
  • Abstract views:  355
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2024
  • Accepted Date:  22 August 2024
  • Available Online:  26 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回