-
Traditional metallic meshes are a two-dimensional square structure with high optical transmittance loss, and the diffraction of light seriously interferes with the imaging quality of the detection system. In this work a metallic network conductive film with a random hexagonal surface structure is designed. This structure has a higher optical transmittance than conventional square metallic meshes. As a result of the random variables in the structure, it can also suppress the stray light of high-order diffraction. Then we prepare a metallic network conductive film on a ZnS optical window with a line width of 4 μm and a period of 100 μm. The metal lines of the sample are clear, the line width is uniform, and there is no dotted line. The transmission loss of the ZnS optical window is 10.5% in the long-wave infrared band (LWIR) band but only 6.8% in the visible band, which has low energy loss. At the same time, it can achieve uniform optical diffraction, thus reducing the imaging interference to the photoelectric detection system. The numerical simulation results show that the average EMI shielding efficiency is 37.9db, which is in an electromagnetic spectrum range from 0.2 GHz to 20 GHz, and its minimum shielding efficiency is 29.6 dB, which is 3.2 dB higher than the traditional square mesh’s. The random hexagonal structure metallic network conductive films designed and prepared in this paper have excellent optical properties and EMI shielding efficiencies, which is of great significance in improving the comprehensive performance of the graphical optical window.
-
Keywords:
- optical window /
- metallic network conductive film /
- electromagnetic interference shielding /
- high-order diffraction
[1] Han J C, Wang X N, Qiu Y F, Zhu J Q, Hu P A 2015 Carbon 87 206Google Scholar
[2] Xu H, Anlage S M, Hu L B, Gruner G 2007 Appl. Phys. Lett. 90 183119Google Scholar
[3] Mesfin H M, Baudouin A C, Hermans S, Delcorte A, Huynen I, Bailly C 2014 Appl. Phys. Lett. 105 103105Google Scholar
[4] Polley D, Barman A, Mitra R K 2014 Opt. Lett. 39 1541Google Scholar
[5] Hu M J, Gao J F, Dong Y C, Li K, Shan G C, Yang S L, Li R K 2012 Langmuir 28 7101Google Scholar
[6] Huang J L, Yau B S, Chen C Y, Lo W T, Lii D F 2001 Ceram. Int. 27 363Google Scholar
[7] Kim C H, Lee Y 2011 Int. J. Precis. Eng. Manuf. 12 161Google Scholar
[8] Han Y, Liu Y X, Han L, Lin J, Jin P 2017 Carbon 115 34Google Scholar
[9] Tan J B, Lu Z G 2007 Opt. Express 15 790Google Scholar
[10] Lu Z G, Liu Y S, Wang H Y, Tan J B 2016 Appl. Opt. 55 5372Google Scholar
[11] Kohin M, Wein S J, Traylor J D, Chase R C, Chapman J E 1993 Opt. Eng. 32 911Google Scholar
[12] Jiang Z Y, Huang W B, Chen L S, Liu Y H 2019 Opt. Express 27 24194Google Scholar
[13] Zhong H, Han Y, Lin J, Jin P 2020 Opt. Express 28 7008Google Scholar
[14] 梁圆龙, 黄贤俊, 姚理想, 程开, 刘培国 2021 安全与电磁兼容 2 61Google Scholar
Liang Y L, Huang X J, Yao L X, Cheng K, Liu P G 2021 Safety & EMC 2 61Google Scholar
[15] Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proceedings of SPIE - The International Society for Optical Engineering Orlando, USA, April 15-16, 2009 p73020 Y
[16] Wang W Q, Bai B F, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar
[17] Han Y, Lin J, Liu Y X, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar
[18] Ulrich R 1967 Infrared Phys. 7 37Google Scholar
[19] 冯晓国, 张舸, 汤洋 2015 光学精密工程 23 686Google Scholar
Feng X G, Zhang G, Tang Y 2015 Opt. Precis. Eng. 23 686Google Scholar
[20] Jiang Z Y, Zhao S Q, Chen L S, Liu Y H 2021 Opt. Express 29 18760Google Scholar
[21] 庄松林, 钱振邦 1981 光学传递函数(北京: 机械工业出版社) 第264页
Zhuang S L, Qian Z B 1981 Optical Transfer Function (Beijing: China Machine Press) p264 (in Chinese)
[22] 陆振刚 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Lu Z G 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
-
-
[1] Han J C, Wang X N, Qiu Y F, Zhu J Q, Hu P A 2015 Carbon 87 206Google Scholar
[2] Xu H, Anlage S M, Hu L B, Gruner G 2007 Appl. Phys. Lett. 90 183119Google Scholar
[3] Mesfin H M, Baudouin A C, Hermans S, Delcorte A, Huynen I, Bailly C 2014 Appl. Phys. Lett. 105 103105Google Scholar
[4] Polley D, Barman A, Mitra R K 2014 Opt. Lett. 39 1541Google Scholar
[5] Hu M J, Gao J F, Dong Y C, Li K, Shan G C, Yang S L, Li R K 2012 Langmuir 28 7101Google Scholar
[6] Huang J L, Yau B S, Chen C Y, Lo W T, Lii D F 2001 Ceram. Int. 27 363Google Scholar
[7] Kim C H, Lee Y 2011 Int. J. Precis. Eng. Manuf. 12 161Google Scholar
[8] Han Y, Liu Y X, Han L, Lin J, Jin P 2017 Carbon 115 34Google Scholar
[9] Tan J B, Lu Z G 2007 Opt. Express 15 790Google Scholar
[10] Lu Z G, Liu Y S, Wang H Y, Tan J B 2016 Appl. Opt. 55 5372Google Scholar
[11] Kohin M, Wein S J, Traylor J D, Chase R C, Chapman J E 1993 Opt. Eng. 32 911Google Scholar
[12] Jiang Z Y, Huang W B, Chen L S, Liu Y H 2019 Opt. Express 27 24194Google Scholar
[13] Zhong H, Han Y, Lin J, Jin P 2020 Opt. Express 28 7008Google Scholar
[14] 梁圆龙, 黄贤俊, 姚理想, 程开, 刘培国 2021 安全与电磁兼容 2 61Google Scholar
Liang Y L, Huang X J, Yao L X, Cheng K, Liu P G 2021 Safety & EMC 2 61Google Scholar
[15] Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proceedings of SPIE - The International Society for Optical Engineering Orlando, USA, April 15-16, 2009 p73020 Y
[16] Wang W Q, Bai B F, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar
[17] Han Y, Lin J, Liu Y X, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar
[18] Ulrich R 1967 Infrared Phys. 7 37Google Scholar
[19] 冯晓国, 张舸, 汤洋 2015 光学精密工程 23 686Google Scholar
Feng X G, Zhang G, Tang Y 2015 Opt. Precis. Eng. 23 686Google Scholar
[20] Jiang Z Y, Zhao S Q, Chen L S, Liu Y H 2021 Opt. Express 29 18760Google Scholar
[21] 庄松林, 钱振邦 1981 光学传递函数(北京: 机械工业出版社) 第264页
Zhuang S L, Qian Z B 1981 Optical Transfer Function (Beijing: China Machine Press) p264 (in Chinese)
[22] 陆振刚 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Lu Z G 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
Catalog
Metrics
- Abstract views: 4087
- PDF Downloads: 72
- Cited By: 0