Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures

Kan Yong Yan Li-Ping Zhao Xiang Zhou Hai-Jing Liu Qiang Huang Ka-Ma

Citation:

Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures

Kan Yong, Yan Li-Ping, Zhao Xiang, Zhou Hai-Jing, Liu Qiang, Huang Ka-Ma
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Shielding effectiveness (SE) estimation for an enclosure with apertures has been an attractive issue in electromagnetic compatibility (EMC) research area. Though many fast algorithms are developed for SE calculation, they mainly focus on the case of single cavity. Moreover, most of these methods neglect the wave coupling through apertures from enclosure to outside. A fast algorithm based on electromagnetic topology is proposed for calculating the SE of cascading multiple enclosures with apertures. In this algorithm, the wave coupling through apertures in both directions is taken into consideration. Firstly, the equivalent circuital model of cascading double enclosures and its signal flow graph of electromagnetic topology are given, followed by the derivation of scattering matrix of apertures node. Then propagation relationships at tube level and reflection relationships at node level are derived. As a result, the general BLT (Baum-Liu-Tesche) equation for voltage calculation at each node is established. Two major categories of cascading three enclosures with apertures are investigated. For serially cascading three enclosures, the general BLT equations are extended on the basis of BLT equations for cascading double enclosures, since the structures are a simple extension of them. For hybrid serially-parallelly cascading three enclosures, the common walls between the main enclosure and two sub-enclosures are considered as a topological node represented by a three-port network, whose scattering matrix is derived according to the definition of scattering parameters. Consequently, the general BLT equations for hybrid serially-parallelly cascading three enclosures are developed. Compared to the algorithms presented in the relevant literature, the topology-based algorithm proposed in this paper can not only calculate the shielding effectiveness for cascading multiple enclosures, but also lead to more accurate results in that the impedance of apertures is obtained through using diaphragms model. In order to validate the proposed method, a cascading double enclosures from a literature is chosen as an example. Calculated SE results are in good agreement with those in the literature. Then, three enclosures with different configurations and dimensions are also designed to validate the proposed method. Results from the proposed method are compared with those from the finite difference time domain (FDTD) method, and they are found to be in good agreement with each other. Experimental results also demonstrate the validation of the proposed method. Especially, the proposed method takes far less time to calculate SE than for FDTD method.
      Corresponding author: Yan Li-Ping, liping_yan@scu.edu.cn
    • Funds: Project supported by NSAF (Grant No. U1530143, 11176017) and National Basic Research Program of China (Grant No. 2013CB328904).
    [1]

    Cerri G, De Leo R, Primiani V M 1992 IEEE Trans. Electromagn. Compatib. 34 423

    [2]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [3]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [4]

    Zhang Y P, Da X Y, Zhu Y K, Zhao M 2014 Acta Phys. Sin. 63 234101 (in Chinese) [张亚普, 达新宇, 祝杨坤, 赵蒙 2014 物理学报 63 234101]

    [5]

    Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Anten. Propag. 38 1805

    [7]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709

    [8]

    Jiao C, Li L, Cui X, Li H 2006 IEEE Trans. Magn. 42 1075

    [9]

    10 Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compatib. 37 488

    [10]

    Nie B L, Du P A, Yu Y T, Shi D 2011 IEEE Trans. Electromagn. Compatib. 53 73

    [11]

    Robinson M P, Turner J D, Thomas D W P, Dawson J F, Ganley M D, Marvin A C, Porter S J, Benson T M, Christopoulos C 1996 IEEE Electron. Lett. 32 1559

    [12]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compatib. 40 240

    [13]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compatib. 52 566

    [14]

    Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compatib. 56 589

    [15]

    Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compatib. 57 357

    [16]

    Konefal T, Dawson J F, Denton A C, Benson T M, Christopoulos C, Marvin A C, Porter S J, Thomas D W P 2001 IEEE Trans. Electromagn. Compatib. 43 273

    [17]

    Parisa D, Ahad T, Mohammad A 2012 IEEE Trans. Electromagn. Compatib. 54 792

    [18]

    Tesche F M 1978 IEEE Trans. Anten. Propag. 26 60

    [19]

    Baum C E, Liu T K, Tesche F M 1978 Interactions Note 350

    [20]

    Baum C E 2005 Electromagnetics 25 623

    [21]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 26 023204 (in Chinese) [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 26 023204]

    [22]

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701 (in Chinese) [罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701]

    [23]

    Song H, Rao Y P, Zhang C, Zhou D F, Hou D T 2008 High Power Laser and Particle Beams 20 1684 (in Chinese) [宋航, 饶育萍, 张超, 周东方, 侯德亭 2008 强激光与粒子束 20 1684]

    [24]

    Hao C, Li D H 2014 Chin. J. Radio Sci. 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]

    [25]

    Hao C, Li D H 2014 IEEE Trans. Electromagn. Compatib. 56 335

    [26]

    Xue M F, Yin W Y, Liu Q F, Mao J F 2008 IEEE Trans. Electromagn. Compatib. 50 928

  • [1]

    Cerri G, De Leo R, Primiani V M 1992 IEEE Trans. Electromagn. Compatib. 34 423

    [2]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [3]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [4]

    Zhang Y P, Da X Y, Zhu Y K, Zhao M 2014 Acta Phys. Sin. 63 234101 (in Chinese) [张亚普, 达新宇, 祝杨坤, 赵蒙 2014 物理学报 63 234101]

    [5]

    Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Anten. Propag. 38 1805

    [7]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709

    [8]

    Jiao C, Li L, Cui X, Li H 2006 IEEE Trans. Magn. 42 1075

    [9]

    10 Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compatib. 37 488

    [10]

    Nie B L, Du P A, Yu Y T, Shi D 2011 IEEE Trans. Electromagn. Compatib. 53 73

    [11]

    Robinson M P, Turner J D, Thomas D W P, Dawson J F, Ganley M D, Marvin A C, Porter S J, Benson T M, Christopoulos C 1996 IEEE Electron. Lett. 32 1559

    [12]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compatib. 40 240

    [13]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compatib. 52 566

    [14]

    Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compatib. 56 589

    [15]

    Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compatib. 57 357

    [16]

    Konefal T, Dawson J F, Denton A C, Benson T M, Christopoulos C, Marvin A C, Porter S J, Thomas D W P 2001 IEEE Trans. Electromagn. Compatib. 43 273

    [17]

    Parisa D, Ahad T, Mohammad A 2012 IEEE Trans. Electromagn. Compatib. 54 792

    [18]

    Tesche F M 1978 IEEE Trans. Anten. Propag. 26 60

    [19]

    Baum C E, Liu T K, Tesche F M 1978 Interactions Note 350

    [20]

    Baum C E 2005 Electromagnetics 25 623

    [21]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 26 023204 (in Chinese) [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 26 023204]

    [22]

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701 (in Chinese) [罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701]

    [23]

    Song H, Rao Y P, Zhang C, Zhou D F, Hou D T 2008 High Power Laser and Particle Beams 20 1684 (in Chinese) [宋航, 饶育萍, 张超, 周东方, 侯德亭 2008 强激光与粒子束 20 1684]

    [24]

    Hao C, Li D H 2014 Chin. J. Radio Sci. 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]

    [25]

    Hao C, Li D H 2014 IEEE Trans. Electromagn. Compatib. 56 335

    [26]

    Xue M F, Yin W Y, Liu Q F, Mao J F 2008 IEEE Trans. Electromagn. Compatib. 50 928

  • [1] Zhu Ming-Jie, Zhao Wei, Wang Zhi-Hai. Photonic shielding in giant resonator system. Acta Physica Sinica, 2023, 72(9): 094202. doi: 10.7498/aps.72.20230049
    [2] Lü Xiao-Long, Lu Hao-Ran, Guo Yun-Sheng. Broadband and high transmission of Mie-resonance-coupled subwavelength metal aperture. Acta Physica Sinica, 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [3] Bai Wan-Xin, Li Tian-Le, Guo An-Qi, Cheng Rui-Qi, Jiao Chong-Qing. Analytical theory on electromagnetic shielding effectiveness of infinite conductor plate with periodic aperture array under plane wave illumination. Acta Physica Sinica, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [4] Liao Yi, Cai Kun, Zhang Yuan, Wang Xiao-Bing. An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction. Acta Physica Sinica, 2016, 65(2): 024102. doi: 10.7498/aps.65.024102
    [5] Hao Jian-Hong, Gong Yan-Fei, Fan Jie-Qing, Jiang Lu-Hang. An analytical model for shielding effectiveness of double layer rectangular enclosure with inner strip-shaped metallic plate. Acta Physica Sinica, 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [6] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [7] Luo Jing-Wen, Du Ping-An, Ren Dan, Nie Bao-Lin. A BLT equation-based approach for calculating the shielding effectiveness of enclosures with apertures. Acta Physica Sinica, 2015, 64(1): 010701. doi: 10.7498/aps.64.010701
    [8] Jiao Chong-Qing, Li Yue-Yue. Analytical formulation for electromagnetic leakage from an apertured rectangular cavity. Acta Physica Sinica, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [9] Wei Xing, Yan Bin, Zhang Feng, Li Yong-Li, Xi Xiao-Qi, Li Lei. Reduction of metal artifacts caused by multiple metallic objects in computed tomography. Acta Physica Sinica, 2014, 63(5): 058702. doi: 10.7498/aps.63.058702
    [10] Zhang Ya-Pu, Da Xin-Yu, Zhu Yang-Kun, Zhao Meng. Formulation for shielding effectiveness analysis of a rectangular enclosure with an electrically large aperture. Acta Physica Sinica, 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [11] Fan Jie-Qing, Hao Jian-Hong, Qi Pei-Hua. Influence of inner windows on near-field shielding effectiveness of rectangular cavity with apertures. Acta Physica Sinica, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [12] Jiao Chong-Qing, Niu Shuai. Shielding effectiveness of an apertured rectangular cavity against the near-field electromagnetic waves. Acta Physica Sinica, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [13] Niu Shuai, Jiao Chong-Qing, Li Lin. Shielding effectiveness of a metal cavity covered by a material with a medium conductivity. Acta Physica Sinica, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [14] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [15] Liu Jun, Lin Gao, Li Jian-Bo. A Study of the hydrodynamic behavior of cylindrical structure with double porous outer shelters. Acta Physica Sinica, 2012, 61(12): 120202. doi: 10.7498/aps.61.120202
    [16] Jiao Chong-Qing, Qi Lei. Electromagnetic coupling and shielding effectiveness of apertured rectangular cavity under plane wave illumination. Acta Physica Sinica, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [17] Zhao Hong-Dong, Zhang Wei-Hua, Li Wen-Chao, Liu Hui-Li, Sun Mei. Influence of current aperture size on threshold in double oxide confined vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [18] Cui Zhan-You, Chen Tian-Ning, Xu Rui-Qi, Wu Jiu-Hui. The role of slit in stop band of periodical narrow slit metal tubes. Acta Physica Sinica, 2009, 58(7): 4752-4759. doi: 10.7498/aps.58.4752
    [19] Liao Xu, Ren Xue-Zao, Zhou Zi-Gang. Study on the influence of the coupling hole on RF cavtiy. Acta Physica Sinica, 2008, 57(7): 3949-3953. doi: 10.7498/aps.57.3949
    [20] HOU CHUN-FENG, YUAN BAO-HONG, SUN XIU-DONG, XU KE-BIN. INCOHERENTLY COUPLED SCREENING-PHOTOVOLTAIC SOLITON PAIRS. Acta Physica Sinica, 2000, 49(10): 1969-1972. doi: 10.7498/aps.49.1969
Metrics
  • Abstract views:  6116
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2015
  • Accepted Date:  28 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回