-
Since electric components and printed circuit board in the enclosure can be destroyed by electromagnetic pulse weapons through “front door and back door” coupling, which is a great threat to the operational security, the study of the shielding effectiveness is of important significance. A formulation for shielding effectiveness analysis of a rectangular enclosure with an electrically large aperture is proposed in this paper. Firstly, the plane wave with oblique incidence and polarization is decomposed. Secondly, based on the Cohn model, the equivalent electric and magnetic dipole of the electrically large aperture is computed. Thirdly, the total Hertz electric and magnetic vector potential is obtained through mirror procedure. Finally, the electric field inside an enclosure with electrically large aperture is formulated, which is used for shielding effectiveness calculation. Five verification experiments are designed. Simulation result shows that the mean square error and absolute error of this method compared to computer simulation technology (CST) microwave studio are 11.565 dB and 8.015 dB respectively, the correlation coefficient is 0.921, through which the accuracy of this method is verified. The simulation time of this method is 0.183 s, which is only 1/7530 times of CST, so its efficiency is obvious.
-
Keywords:
- Bethe' /
- s slot coupling theory /
- equivalent dipole /
- mirror procedure
[1] Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]
[2] Ji W J, Tong C M 2013 Chin. Phys. B 22 020301
[3] Lu X C, Wang J G, Liu Y, Li S, Han F 2013 Acta Phys. Sin. 62 070504 (in Chinese) [陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 物理学报 62 070504]
[4] Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 物理学报 63 014104]
[5] Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101
[6] Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Antennas Propag. 38 1805
[7] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[8] Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compat. 37 488
[9] Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240
[10] Konefal T, Dawson J F, Marvin A C, Robinson M P, Porter S J 2005 IEEE Trans. Electromagn. Compat. 47 678
[11] Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat. 50 208
[12] Jongjoo S, Dong G K, Jong H K, Joungho K 2010 IEEE Trans. Electromagn. Compat. 52 566
[13] Belkacem F T, Bensetti M, Boutar A G, Moussaoui D, Djennah M, Mazari B 2011 IET Sci. Meas. Technol. 5 88
[14] Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252
[15] Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82
[16] Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188
-
[1] Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]
[2] Ji W J, Tong C M 2013 Chin. Phys. B 22 020301
[3] Lu X C, Wang J G, Liu Y, Li S, Han F 2013 Acta Phys. Sin. 62 070504 (in Chinese) [陆希成, 王建国, 刘钰, 李爽, 韩峰 2013 物理学报 62 070504]
[4] Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 物理学报 63 014104]
[5] Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101
[6] Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Antennas Propag. 38 1805
[7] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[8] Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compat. 37 488
[9] Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240
[10] Konefal T, Dawson J F, Marvin A C, Robinson M P, Porter S J 2005 IEEE Trans. Electromagn. Compat. 47 678
[11] Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Trans. Electromagn. Compat. 50 208
[12] Jongjoo S, Dong G K, Jong H K, Joungho K 2010 IEEE Trans. Electromagn. Compat. 52 566
[13] Belkacem F T, Bensetti M, Boutar A G, Moussaoui D, Djennah M, Mazari B 2011 IET Sci. Meas. Technol. 5 88
[14] Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252
[15] Solin J R 2011 IEEE Trans. Electromagn. Compat. 53 82
[16] Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188
Catalog
Metrics
- Abstract views: 5727
- PDF Downloads: 304
- Cited By: 0