Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional simulation of influence of plume magnetic field on performance of Hall thrusters

Yang San-Xiang Zhao Yi-De Dai Peng Li Jian-Peng Geng Hai Yang Jun-Tai Jia Yan-Hui Guo Ning

Citation:

Two-dimensional simulation of influence of plume magnetic field on performance of Hall thrusters

Yang San-Xiang, Zhao Yi-De, Dai Peng, Li Jian-Peng, Geng Hai, Yang Jun-Tai, Jia Yan-Hui, Guo Ning
cstr: 32037.14.aps.73.20241331
PDF
HTML
Get Citation
  • As one of the key design parameters of Hall thruster, magnetic field indirectly influences the macroscopic performance of the thruster by directly affecting electron transport, neutral atom ionization, plasma distribution and other microscopic behaviors. At present, the research on the influence of Hall thruster’s magnetic field focuses mostly on the size and distribution of the magnetic field in the discharge channel, but less on the influence of the plume magnetic field on the thruster. Based on this, the effect of plume region axial magnetic field profile on the performance of Hall thruster is studied by using two-dimensional hybrid simulation. The research results show that the axial magnetic field gradient in the plume region has a significant influence on the thruster performance, when the magnetic field characteristics (magnetic field topology and magnetic field intensity) in the discharge channel remain unchanged. The potential drop in the discharge channel decreases with the axial magnetic field gradient in the plume region decreasing. However, the electric field in the plume region and the peak ion number density in the discharge channel increase with the axial magnetic field gradient in the plume region decreasing. Overall, the performance of the thruster is improved by increasing the magnetic field strength in the plume region. More specifically, there is a critical value of axial magnetic field gradient in the plume region. When the axial magnetic field gradient in the plume region is greater than the critical value, the thrust increases with the axial magnetic field gradient decreasing. When the axial magnetic field gradient of the plume region is less than the critical value, the thrust decreases slightly with the axial magnetic field gradient decreasing. The comparison of plasma potential, electric field, ion number density, and ionization rate distribution under different magnetic field distributions in the plume region shows that the effect of plume magnetic field on thrust is to affect the spatial electric field distribution by affecting the mobility of electrons, thus causing the thrust to change due to electric field. The research results of this paper will provide theoretical support for improving the performance of hall thrusters and designing magnetic fields.
      Corresponding author: Geng Hai, marineen115@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFC2202704), the National Natural Science Foundation of China (Grant No. 62201238), the Outstanding Youth Fund of Gansu Province, China (Grant No. 21JR7RA744), and the Natural Science Foundation of Gansu Province, China (Grant Nos. 22JR5RA789, 22JR5RA787).
    [1]

    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002Google Scholar

    [2]

    Li W B, Ding Y J, Wei L Q, Han L, Yu D R 2017 Vacuum 136 77Google Scholar

    [3]

    Taccogna F, Minelli P, Capitelli M, Longo S 2012 Am. Instit. Phys. 1501 1390Google Scholar

    [4]

    Raitses Y, Fisch N J 2001 Phys. Plasmas 8 2579Google Scholar

    [5]

    Shitrit S, Ashkenazy J, Appelbaum G, Warshavsky A 2008 IEEE Trans. Plasma Sci. 36 2025Google Scholar

    [6]

    Gawron D, Mazouffre S, Sadeghi N, Héron A 2008 Plasma Sources Sci. Technol. 17 025001Google Scholar

    [7]

    Shmelev A V, Lovtsov A S 2012 Tech. Phys. Lett. 38 544Google Scholar

    [8]

    Hofer R R, Geoibel D M, Mikellides I G, Katz I, 2014 J. Appl. Phys. 115 043304Google Scholar

    [9]

    Li H, Fan H T, Liu X Y, Ding M H, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Vacuum 162 78Google Scholar

    [10]

    Garrigues L, Hagelarr G J M, Bareilles J, Boniface C, Boeuf J P 2003 Phys. Plasmas 10 4886Google Scholar

    [11]

    Sommier E, Allis M K, Cappelli M A 2005 The 29th International Electric Propulsion Conference Princeton NJ, USA, October 31–November 4, 2005 IEPC-2005-189

    [12]

    Ahedo E, Antón A, Garmendia I, Caro I 2007 The 30 th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC-2007-067

    [13]

    Boniface C, Garrigues L, Hagelaar G J M, Boefu J P 2006 Appl. Phys. Lett. 89 161503Google Scholar

    [14]

    Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 J. Appl. Phys. 115 203304Google Scholar

    [15]

    Perales-Dĺaz J, Domĺnguez-Vázquez Fajardo P, Ahedo E, Faraji F, Reza M, Andreussi T 2022 J. Appl. Phys. 131 103302Google Scholar

    [16]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 1627Google Scholar

    [17]

    Liu J W, Li H, Hu Y L, Liu X Y, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Contrib. Plasma Phys. 59 e201800001Google Scholar

    [18]

    杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏 2022 物理学报 71 105201Google Scholar

    Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201Google Scholar

    [19]

    Keidar M, Boyd I D 1999 J. Appl. Phys. 86 4786Google Scholar

    [20]

    Mikellides I G, Katz I, Mandell M J, Snyder J S 2001 37 th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, Utah, July 8–11, 2001 AIAA-2001-3505

    [21]

    Boyd I D, Yim J M 2004 J. Appl. Phys. 95 4575Google Scholar

    [22]

    Raitses Y, Gaysoso J C, Merino E, Fisch N J 2010 46 th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 AIAA-2010-6621

    [23]

    Hu P, Liu H, Mao W, Yu D R, Gao Y Y 2015 Phys. Plasmas 22 103502Google Scholar

    [24]

    Kim H, Lim Y, Choe W, Park S, Seon J 2015 Appl. Phys. Lett. 106 154103Google Scholar

    [25]

    Singh S, Malik H K 2023 J. Astrophys. Astr. 44 3Google Scholar

    [26]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22 721Google Scholar

    [27]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22 732Google Scholar

    [28]

    Henaux C, Vilamot R, Garrigues L, Harribey D 2012 20 th International Conferences on Electrical Machines Marseille, France, September 2–5, 2012 p2533

    [29]

    Domonkos M T, Gallimore A D, Marrese C M, Haas J M 2000 J. Propul. Power 16 91Google Scholar

    [30]

    Liang R, Gallimore A D 2011 49 th AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 4–7, 2011 AIAA-2011-1016

    [31]

    Adam J C, Héron A, Laval G 2004 Phys. Plasma 11 295Google Scholar

    [32]

    Lafleur T, Martorelli R, Chabert P, Bourdon A 2018 Phys. Plasma 25 061202Google Scholar

    [33]

    Coche P, Garrigues L 2014 Phys. Plasmas 21 023503Google Scholar

    [34]

    Chen L, Kan Z C, Gao W F, Duan P, Chen J Y, Tan C Q, Cui Z J 2024 Chin. Phys. B 33 015203Google Scholar

    [35]

    Yu D R, Qing S W, Liu H, Li H 2011 Contrib. Plasma Phys. 51 955Google Scholar

    [36]

    Yu D R, Song M, Liu H, Ding Y J, Li H 2012 Phys. Plasmas 19 033503Google Scholar

    [37]

    Szabo J, Warner N, Martinez-Sanchez M, Batishchev O 2014 J. Propuls. Power 30 197Google Scholar

    [38]

    Taccogna F, Minelli P 2018 Phys. Plasmas 25 061208Google Scholar

    [39]

    Garrigues L, Hagelarr G J M, Boniface C, Boeuf J P 2004 Appl. Phys. Lett. 85 5460Google Scholar

    [40]

    Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010Google Scholar

    [41]

    Katz I, Jongeward G, Davis V, et al. 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, Utah, July 8–11, 2001 AIAA-2001-3355

    [42]

    Kawashima R, Komurasaki K, Schönherr T Koizumi H 2016 54 th AIAA Aerospace Sciences Meeting San Diego, California, USA, January 4–8, 2016 AIAA-2016-2159

    [43]

    Kawashima R, Wang Z X, Chamarthi A S 2018 55 th AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8–12, 2018 AIAA-2018-0175

    [44]

    Hofer R R, Mikellides I G, Katz I, Goebel D M 2007 43 rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Honolulu, Hawaii, April 23–26, 2007 AIAA-2007-5267

    [45]

    Manzella D, Jankovsky R, Elliott F, Mikellides I, Jongeward G, Allen D 2001 27 th International Electric Propulsion Conference Pasadena, CA, October 15–19, 2001 IEPC-2001-044

    [46]

    Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2017 Plasma Phys. Control. Fusion. 60 014015Google Scholar

    [47]

    Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H, Komurasaki K 2014 Vacuum 10 159Google Scholar

  • 图 1  粒子-流体混合模型计算流程图

    Figure 1.  Calculation flowchart of the particle-fluid hybrid model.

    图 2  计算域及边界条件

    Figure 2.  Calculation domain and boundary conditions.

    图 3  (a) ${\alpha _1}$和(b) ${\alpha _2}$对轴向磁场分布的影响.

    Figure 3.  Influences of (a) ${\alpha _1}$ and (b) ${\alpha _2}$ on the magnetic field distribution.

    图 4  ${\alpha _1} = 0.35$时${\alpha _2}$对推力的影响

    Figure 4.  Influence of ${\alpha _2}$ on the thrust at ${\alpha _1} = 0.35$.

    图 5  ${\alpha _1} = 0.35$时${\alpha _2}$对电势(a)和电场(b)分布的影响

    Figure 5.  Influence of ${\alpha _2}$ on potential (a) and electric field (b) at ${\alpha _1} = 0.35$.

    图 6  ${\alpha _1} = 0.35$时${\alpha _2}$对离子产生速率(a)和离子密度的影响(b)

    Figure 6.  Influence of ${\alpha _2}$ on ion production rate (a) and ion number density (b) at ${\alpha _1} = 0.35$.

    图 7  不同${\alpha _2}$时电势的分布

    Figure 7.  Potential distribution for different ${\alpha _2}$.

    图 8  不同${\alpha _2}$时轴向电场的分布

    Figure 8.  Axial electric field distribution for different ${\alpha _2}$.

    图 9  不同${\alpha _2}$时离子数密度的分布

    Figure 9.  Ion number density distribution for different ${\alpha _2}$.

  • [1]

    Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002Google Scholar

    [2]

    Li W B, Ding Y J, Wei L Q, Han L, Yu D R 2017 Vacuum 136 77Google Scholar

    [3]

    Taccogna F, Minelli P, Capitelli M, Longo S 2012 Am. Instit. Phys. 1501 1390Google Scholar

    [4]

    Raitses Y, Fisch N J 2001 Phys. Plasmas 8 2579Google Scholar

    [5]

    Shitrit S, Ashkenazy J, Appelbaum G, Warshavsky A 2008 IEEE Trans. Plasma Sci. 36 2025Google Scholar

    [6]

    Gawron D, Mazouffre S, Sadeghi N, Héron A 2008 Plasma Sources Sci. Technol. 17 025001Google Scholar

    [7]

    Shmelev A V, Lovtsov A S 2012 Tech. Phys. Lett. 38 544Google Scholar

    [8]

    Hofer R R, Geoibel D M, Mikellides I G, Katz I, 2014 J. Appl. Phys. 115 043304Google Scholar

    [9]

    Li H, Fan H T, Liu X Y, Ding M H, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Vacuum 162 78Google Scholar

    [10]

    Garrigues L, Hagelarr G J M, Bareilles J, Boniface C, Boeuf J P 2003 Phys. Plasmas 10 4886Google Scholar

    [11]

    Sommier E, Allis M K, Cappelli M A 2005 The 29th International Electric Propulsion Conference Princeton NJ, USA, October 31–November 4, 2005 IEPC-2005-189

    [12]

    Ahedo E, Antón A, Garmendia I, Caro I 2007 The 30 th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC-2007-067

    [13]

    Boniface C, Garrigues L, Hagelaar G J M, Boefu J P 2006 Appl. Phys. Lett. 89 161503Google Scholar

    [14]

    Hara K, Sekerak M J, Boyd I D, Gallimore A D 2014 J. Appl. Phys. 115 203304Google Scholar

    [15]

    Perales-Dĺaz J, Domĺnguez-Vázquez Fajardo P, Ahedo E, Faraji F, Reza M, Andreussi T 2022 J. Appl. Phys. 131 103302Google Scholar

    [16]

    Jiang Y W, Tang H B, Ren J X, Li M, Cao J B 2018 J. Phys. D: Appl. Phys. 51 1627Google Scholar

    [17]

    Liu J W, Li H, Hu Y L, Liu X Y, Ding Y J, Wei L Q, Yu D R, Wang X G 2019 Contrib. Plasma Phys. 59 e201800001Google Scholar

    [18]

    杨三祥, 王倩楠, 高俊, 贾艳辉, 耿海, 郭宁, 陈新伟, 袁兴龙, 张鹏 2022 物理学报 71 105201Google Scholar

    Yang S X, Wang Q N, Gao J, Jia Y H, Geng H, Guo N, Chen X W, Yuan X L, Zhang P 2022 Acta Phys. Sin. 71 105201Google Scholar

    [19]

    Keidar M, Boyd I D 1999 J. Appl. Phys. 86 4786Google Scholar

    [20]

    Mikellides I G, Katz I, Mandell M J, Snyder J S 2001 37 th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, Utah, July 8–11, 2001 AIAA-2001-3505

    [21]

    Boyd I D, Yim J M 2004 J. Appl. Phys. 95 4575Google Scholar

    [22]

    Raitses Y, Gaysoso J C, Merino E, Fisch N J 2010 46 th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Nashville, TN, July 25–28, 2010 AIAA-2010-6621

    [23]

    Hu P, Liu H, Mao W, Yu D R, Gao Y Y 2015 Phys. Plasmas 22 103502Google Scholar

    [24]

    Kim H, Lim Y, Choe W, Park S, Seon J 2015 Appl. Phys. Lett. 106 154103Google Scholar

    [25]

    Singh S, Malik H K 2023 J. Astrophys. Astr. 44 3Google Scholar

    [26]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22 721Google Scholar

    [27]

    Hofer R R, Gallimore A D 2006 J. Propul. Power 22 732Google Scholar

    [28]

    Henaux C, Vilamot R, Garrigues L, Harribey D 2012 20 th International Conferences on Electrical Machines Marseille, France, September 2–5, 2012 p2533

    [29]

    Domonkos M T, Gallimore A D, Marrese C M, Haas J M 2000 J. Propul. Power 16 91Google Scholar

    [30]

    Liang R, Gallimore A D 2011 49 th AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 4–7, 2011 AIAA-2011-1016

    [31]

    Adam J C, Héron A, Laval G 2004 Phys. Plasma 11 295Google Scholar

    [32]

    Lafleur T, Martorelli R, Chabert P, Bourdon A 2018 Phys. Plasma 25 061202Google Scholar

    [33]

    Coche P, Garrigues L 2014 Phys. Plasmas 21 023503Google Scholar

    [34]

    Chen L, Kan Z C, Gao W F, Duan P, Chen J Y, Tan C Q, Cui Z J 2024 Chin. Phys. B 33 015203Google Scholar

    [35]

    Yu D R, Qing S W, Liu H, Li H 2011 Contrib. Plasma Phys. 51 955Google Scholar

    [36]

    Yu D R, Song M, Liu H, Ding Y J, Li H 2012 Phys. Plasmas 19 033503Google Scholar

    [37]

    Szabo J, Warner N, Martinez-Sanchez M, Batishchev O 2014 J. Propuls. Power 30 197Google Scholar

    [38]

    Taccogna F, Minelli P 2018 Phys. Plasmas 25 061208Google Scholar

    [39]

    Garrigues L, Hagelarr G J M, Boniface C, Boeuf J P 2004 Appl. Phys. Lett. 85 5460Google Scholar

    [40]

    Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010Google Scholar

    [41]

    Katz I, Jongeward G, Davis V, et al. 2001 37th AIAA/ASME/SAE/AHS/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, Utah, July 8–11, 2001 AIAA-2001-3355

    [42]

    Kawashima R, Komurasaki K, Schönherr T Koizumi H 2016 54 th AIAA Aerospace Sciences Meeting San Diego, California, USA, January 4–8, 2016 AIAA-2016-2159

    [43]

    Kawashima R, Wang Z X, Chamarthi A S 2018 55 th AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8–12, 2018 AIAA-2018-0175

    [44]

    Hofer R R, Mikellides I G, Katz I, Goebel D M 2007 43 rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Honolulu, Hawaii, April 23–26, 2007 AIAA-2007-5267

    [45]

    Manzella D, Jankovsky R, Elliott F, Mikellides I, Jongeward G, Allen D 2001 27 th International Electric Propulsion Conference Pasadena, CA, October 15–19, 2001 IEPC-2001-044

    [46]

    Andreussi T, Giannetti V, Leporini A, Saravia M M, Andrenucci M 2017 Plasma Phys. Control. Fusion. 60 014015Google Scholar

    [47]

    Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H, Komurasaki K 2014 Vacuum 10 159Google Scholar

  • [1] Yang San-Xiang, Zhao Yi-De, Dai Peng, Li Jian-Peng, Gu Zeng-Jie, Meng Wei, Geng Hai, Guo Ning, Jia Yan-Hui, Yang Jun-Tai. Instabilities triggered by electron collision and gradient of plasma density and magnetic field in the Hall thruster. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241330
    [2] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [3] Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong. Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility. Acta Physica Sinica, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [4] Yang San-Xiang, Guo Ning, Jia Yan-Hui, Geng Hai, Gao Jun, Liu Jia-Tao, Liu Shi-Yong, Yang Sheng-Lin. Breathing oscillations excitation mechanism and influence factors in Hall thrusters. Acta Physica Sinica, 2023, 72(8): 085201. doi: 10.7498/aps.72.20230009
    [5] Yang San-Xiang, Wang Qian-Nan, Gao Jun, Jia Yan-Hui, Geng Hai, Guo Ning, Chen Xin-Wei, Yuan Xing-Long, Zhang Peng. Numerical study of the effect of radial magnetic field on performance of Hall thruster. Acta Physica Sinica, 2022, 71(10): 105201. doi: 10.7498/aps.71.20212386
    [6] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [7] Wang Wen-Zhao, Hu Bi-Tao, Zheng Hao, Tu Xiao-Qing, Gao Peng-Lin, Yan Song, Guo Wen-Chuan, Yan Hai-Yang. A new magnetic field system for 3He polarization. Acta Physica Sinica, 2018, 67(17): 176701. doi: 10.7498/aps.67.20180571
    [8] Zhang Rui, Zhang Dai-Xian, Zhang Fan, He Zhen, Wu Jian-Jun. Structural and optical characterization of film deposited by pulsed plasma thruster plume. Acta Physica Sinica, 2013, 62(2): 025207. doi: 10.7498/aps.62.025207
    [9] Yu Yao, Zhang Jing-Si, Chen Dai-Dai, Guo Rui-Qian, Gu Zhi-Hua. Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD. Acta Physica Sinica, 2013, 62(13): 138501. doi: 10.7498/aps.62.138501
    [10] Qing Shao-Wei, E Peng, Duan Ping. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster. Acta Physica Sinica, 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [11] Yang Fu-Jun, Ban Shi-Liang. Influence of optical-phonon scattering on electron mobility in wurtzite AlGaN/AlN/GaN heterostructures. Acta Physica Sinica, 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [12] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [13] Li Bin, Liu Hong-Xia, Yuan Bo, Li Jin, Lu Feng-Ming. Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [14] Wang Xiao-Yan, Zhang He-Ming, Song Jian-Jun, Ma Jian-Li, Wang Guan-Yu, An Jiu-Hua. Electron mobility of strained Si/(001)Si1- x Ge x. Acta Physica Sinica, 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [15] Qing Shao-Wei, Ding Yong-Jie, Duan Ping, Wang Xiao-Gang, Yu Da-Ren. Effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thrusters. Acta Physica Sinica, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [16] Deng Li-Yun, Lan Hong-Mei, Liu Yue. Numerical study on Hall thruster magnetic configuration and its optimization. Acta Physica Sinica, 2011, 60(2): 025213. doi: 10.7498/aps.60.025213
    [17] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [18] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [19] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [20] Zheng Zhong-Shan, Liu Zhong-Li, Zhang Guo-Qiang, Li Ning, Fan Kai, Zhang En-Xia, Yi Wan-Bing, Chen Meng, Wang Xi. Effects of the technology of implanting nitrogen into buried oxide layer on the characteristics of partially depleted SOI nMOSFET. Acta Physica Sinica, 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
Metrics
  • Abstract views:  222
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2024
  • Accepted Date:  09 November 2024
  • Available Online:  20 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回