Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility

Peng Teng Wang Hui-Yao Zhao Xi Liu Jun-Hong Wang Bo Wang Jing-Jing Zhou Yin-Qiong Zhang Ke-Yi Yang Jun Xiong Zu-Hong

Citation:

The modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility

Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong
PDF
Get Citation
  • Half-band-gap turn-on characteristic is a unique photoelectric property of organic light-emitting diodes (OLEDs), which has advantage in the development of low power consumption devices. But the physical mechanism that the electron injection layer (EIL) affects the half-band-gap turn-on characteristics has not been reported. Herein, we found that the change from half-band-gap turn-on electroluminescence (EL) to sub-band-gap turn-on EL to normal turn-on EL is observed by tuning the electron mobility of EIL in Rubrene/C60 based devices. Three sets of devices were fabricated by using BCP (~10-3 cm2·V–1·s–1, Dev.1), Bphen (~10-4 cm2·V–1·s–1, Dev.2) and TPBi (~10-5 cm2·V–1·s–1, Dev.3) as EIL materials. By measuring the I-B-V curves of devices at room temperature, we found that the turn-on voltage of devices obviously increases with the decreases of electron mobility of EIL by an order of magnitude. Specifically, the turn-on voltage of Dev.1, Dev.2, and Dev.3 exhibit the physical phenomena of half-band-gap turn-on (1.1 V), sub-band-gap turn-on (2.1 V) and normal turn-on (4.1 V) properties, respectively. The magneto-electroluminescence (MEL) results show that the half-band-gap turn-on characteristic of high EIL electron mobility (Dev.1) is attributed to the triplet-triplet annihilation (TTA, T1, Rb + T1, Rb → S1, Rb + S0) process which can effectively reduce the turn-on voltage. However, the half-band-gap turn-on characteristic is not observed in the devices (Dev.2 and Dev.3) with low carrier mobility, which can be reasonably explained by a higher voltage is applied to the EIL with low electron mobility in order to inject more electrons. The higher voltage counteracts the reduced turn-on voltage of the TTA process, resulting in Dev.2 and Dev.3 with sub-band-gap turn-on and normal turn-on, respectively. In addition, although the TTA process was observed in all three devices, the TTA process was stronger and the EL was higher in Dev.1 with high EIL electron mobility. This is because a large number of triplet Rubrene/C60 exciplex states (EX3) was formed at the Rubrene/C60 interface, enhancing the Dexter energy transfer (DET, EX3 → T1, Rb) process from EX3 to triplet exciton of Rubrene (T1, Rb). That is, Dev.1 exhibits stronger TTA process and higher EL due to the presence of a large number of T1, Rb exciton formed by DET process as compared to Dev.2 and Dev.3. Furthermore, by measuring the I-V curves of devices acquired at low temperature, it was found that the reduced carrier mobility caused by lowering operational temperature increases the turn-on voltages of these three devices. The significantly different increases in the turn-on voltage of Dev.1-3 at the same low temperature is due to the different influences of temperature on the electron mobility of EIL. The tradeoff between the decrease of carrier mobility and the extension of exciton lifetime makes the MEL curves present different temperature-dependent behavior. Obviously, this work further deepens the understanding for the influence of EIL electron mobility on the turn-on voltage and the related physical microscopic mechanism in Rubrene/C60 devices.
  • [1]

    B. W. D’Andrade, J. Esler, C. Lin, V. Adamovich, S.Xia, M. S.Weaver, R. Kwong, J. J. Brown, Proc. 2008 SPIE. 7051, 70510Q.

    [2]

    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, 2009 Nature 459, 234.

    [3]

    M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, 2011 Science 332, 944.

    [4]

    T. Komoda, K. Yamae, V. Kittichungchit, H. Tsuji, N. Ide, 2012 SID 12 Dig. 610.

    [5]

    Pandey, Ajay K, and J‐M. Nunzi 2007 Adv. Mater. 19 3613-3617

    [6]

    Engmann S, Barito A J, Bittle E G, Giebink N C, Richter L J, Gundlach D J 2019 Nat. Commun. 10 227

    [7]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331

    [8]

    Tu L Y, Tang X T, Wang Y, Zhao X, Ma C H, Ye S N, Xiong Z H 2021 Phys. Rev. Appl. 16 064002

    [9]

    Xiang C Y, Peng C, ChenY, F So 2015 Small 11 5439

    [10]

    He S J, Lu Z H 2016 Journal of Photonics for Energy 6(3) 036001-036001

    [11]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces. 10(2) 1948-1956

    [12]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. 41 5626

    [13]

    Wang Y P, Li B, Jiang C, Fang Y, Bai P, Wang Y 2021 J. Phys. Chem. C 125 16753–16758

    [14]

    Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T, Wu C I 2006 Appl. Phys. Lett. 88 064102

    [15]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971

    [16]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516

    [17]

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201 (in Chinese) [吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201]

    [18]

    Bai J W, Chen P, Lei Y L, Zhang Y, Zhang Q M 2014 Org. Electron. 15 169

    [19]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J.Phys. Chem. C 117 1224

    [20]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304

    [21]

    Geng R, Subedi R C, Luong H M, Pham M T, Huang W C, Li X G, Hong K L, Shao M, Xiao K, Hornak L A, Nguyen T D 2018 Phys. Rev. Lett. 120 086602

    [22]

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p300 (in Chinese) [黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第300页]

    [23]

    Park B, In I, Gopalan P, Evans P G, King S, Lyman P F 2008 Appl. Phys. Lett. 92 133302

    [24]

    Kobayashi S, T Takenobu, S Mori, A Fujiwara, Y Iwasa 2003 Science and Technology of Advanced Materials 4 371–375

    [25]

    Peng Q, Chen P, Li F 2013 Appl. Phys. Lett. 102 023301

    [26]

    Qiao X F, Yuan P S, Ma D G, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1-6

    [27]

    Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889

    [28]

    Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302

    [29]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 5 765

    [30]

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201 (in Chinese) [王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201]

    [31]

    Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882

    [32]

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201 (in Chinese) [宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201]

    [33]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264

    [34]

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801 (in Chinese) [陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801]

    [35]

    Hosokawa C, Tokailin H, Higashi H, Kusumoto T 1992 Appl. Phys. Lett. 60, 1220–1222

  • [1] Ren Xing, Yu Hong-Yu, Zhang Yong. Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231301
    [2] Bao Xi, Guan Yun-Xia, Li Wan-Jiao, Song Jia-Yi, Chen Li-Jia, Xu Shuang, Peng Ke-Ao, Niu Lian-Bin. Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED. Acta Physica Sinica, doi: 10.7498/aps.72.20230851
    [3] Liu Meng-Jiao, Zhang Xin-Wen, Wang Jiong, Qin Ya-Bo, Chen Yue-Hua, Huang Wei. Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures. Acta Physica Sinica, doi: 10.7498/aps.67.20181209
    [4] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, doi: 10.7498/aps.64.097801
    [5] Huang Di, Xu Zheng, Zhao Su-Ling. Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer. Acta Physica Sinica, doi: 10.7498/aps.63.027301
    [6] Yu Yao, Zhang Jing-Si, Chen Dai-Dai, Guo Rui-Qian, Gu Zhi-Hua. Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD. Acta Physica Sinica, doi: 10.7498/aps.62.138501
    [7] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, doi: 10.7498/aps.62.087302
    [8] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, doi: 10.7498/aps.61.117106
    [9] Yang Fu-Jun, Ban Shi-Liang. Influence of optical-phonon scattering on electron mobility in wurtzite AlGaN/AlN/GaN heterostructures. Acta Physica Sinica, doi: 10.7498/aps.61.087201
    [10] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.61.187305
    [11] Feng Sheng-Qi, Fang Hai, Qiu Qing-Chun. Theoretical studies on vibronic Jahn-Teller systems using group theory. Acta Physica Sinica, doi: 10.7498/aps.60.017105
    [12] Liu Nan-Liu, Ai Na, Hu Dian-Gang, Yu Shu-Fu, Peng Jun-Biao, Cao Yong, Wang Jian. Effect of spin-coating process on the performance of passive-matrix organic light-emitting display. Acta Physica Sinica, doi: 10.7498/aps.60.087805
    [13] Wang Xiao-Yan, Zhang He-Ming, Song Jian-Jun, Ma Jian-Li, Wang Guan-Yu, An Jiu-Hua. Electron mobility of strained Si/(001)Si1- x Ge x. Acta Physica Sinica, doi: 10.7498/aps.60.077205
    [14] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, doi: 10.7498/aps.60.047809
    [15] Li Bin, Liu Hong-Xia, Yuan Bo, Li Jin, Lu Feng-Ming. Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, doi: 10.7498/aps.60.017202
    [16] Zhang Yong, Liu Rong, Lei Yan-Lian, Chen Ping, Zhang Qiao-Ming, Xiong Zu-Hong. Magnetoconductance in Alq3-based organic light-emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.59.5817
    [17] Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping. Effect of the electric field on the decay of excited states in poly-phenylenevinylene. Acta Physica Sinica, doi: 10.7498/aps.59.2831
    [18] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, doi: 10.7498/aps.56.1156
    [19] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.56.1632
    [20] Zheng Zhong-Shan, Liu Zhong-Li, Zhang Guo-Qiang, Li Ning, Fan Kai, Zhang En-Xia, Yi Wan-Bing, Chen Meng, Wang Xi. Effects of the technology of implanting nitrogen into buried oxide layer on the characteristics of partially depleted SOI nMOSFET. Acta Physica Sinica, doi: 10.7498/aps.54.348
Metrics
  • Abstract views:  37
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  25 September 2024

/

返回文章
返回