搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏置电场对聚对苯乙烯激发态弛豫特性的影响

程萍 高峰 陈向东 杨继平

引用本文:
Citation:

偏置电场对聚对苯乙烯激发态弛豫特性的影响

程萍, 高峰, 陈向东, 杨继平

Effect of the electric field on the decay of excited states in poly-phenylenevinylene

Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping
PDF
导出引用
  • 为探讨洞悉电场对有机发光二极管电致荧光量子效率的影响,通过激发-探测超快光谱技术研究了激子在电场下的瞬态行为.与单重态激子相应的激发态在230 μJ/cm2激发强度下,显示了快慢两个弛豫过程. 快慢组分的权重因子及快组分弛豫时间常数是电场相关的, 在6.4×105 V/cm的电场下,与无偏置电场相比,激子的快组分弛豫时间加速,快组分的权重因子由22%增加为72%,约50%的初始激子又通过电场而离解. 慢组分是电场无关的,其弛豫时间常数为890 ps. 实验结果还揭示了由激发光所产生的长程声学声子,其声速为17 /ps.
    To gain an insight into the effect of electric field on the electro-luminescence of organic light emission diode, the ultrafast pump-probe spectroscopy is used to investigate the transient phenomena of the excitons induced by the electric field. Under the excitation density of 230 μJ/cm2, the decay of the singlet excitons shows a fast and a slow component. The amplitude factor and the relaxation time of fast component are field-dependent. Compared with the zero biascase, the relaxation time of the fast component becomes faster at a bias of 6.4×105 V/cm, its amplitude factor is increased from 22% to 72%, about 50% initial excitons are dissociated by the electric field. The slow component is field-independent, its relaxation time-constant is about 890 ps. The longitudinal acoustic phonons with sound velocity of 17 /ps generated by excitation pulse are observed.
    • 基金项目: 国家自然科学基金(批准号:20573030)资助的课题.
    [1]

    [1]Mezyk J, Meinardi F, Cocchi M 2008 Appl. Phys. Lett. 93 093301

    [2]

    [2]Kalinowski J 2005 Organic Light Emitting Diodes: Principles, Characteristics, and Processes (New York: Marcel Dekker) p135

    [3]

    [3]Stampor W, Mezyk J 2007 Chem. Phys. 337 151

    [4]

    [4]Kalinowski J, Mezyk J, Meinardi F, Tubino R, Cocchi M, Virgili D 2005 J. Appl. Phys. 98 063532-1

    [5]

    [5]Holzer W, Penzkofer A, Tsuboi T 2005 Chem. Phys. 308 93

    [6]

    [6]Jiang H, Xu X H, Sun X, Fu R L, Chu J H 1999 Acta Phys. Sin. 48 2327 (in Chinese) [姜浩、徐晓华、孙鑫、傅柔励、褚君浩 1999 物理学报 48 2327]

    [7]

    [7]Arkhipov V I, Bssler H, Deussen M, Gbel E O, Kersting R, Kurz H, Lemmer U, Mahrt R F 1995 Phys. Rev. B 52 4932

    [8]

    [8]Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏、张铁桥、王树峰、龚旗煌 2000 物理学报 49 1292]

    [9]

    [9]Gadermaier C, Grasse F, Perissinotto S, Graf M, Galbrecht F, Scherf U, List E J W, Lanzani G 2008 Phys. Rev. Lett. 100 057401

    [10]

    ]Bssler H 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p51

    [11]

    ]Maniloff E S, Klimov V I, McBranch D W 1997 Phys. Rev. B 56 1876

    [12]

    ]Zaushitsyn Y, Gulbinas V, Zigmantas D, Zhang F L, Ingans O, Sundstrm V, Zartsev A 2004 Phys. Rev. B 70 075202

    [13]

    ]Shkunov M N, Huang J D, Vardeny Z V, Yoshino K 1999 Synth. Metals 102 1118

    [14]

    ]Li A Z, Chen Z F, Wang H, Zhang Y W, Zhang W, Yu H C, Huang J W, Ji L N 2009 Acta Phys. Sin. 58 1321 (in Chinese) [黎爱珍、陈志峰、王惠、张燕伟、张伟、余汉诚、黄锦汪、计亮年 2009 物理学报 58 1321]

    [15]

    ]Yin S H, Liu J Y, Lou N Q 2006 J. At. Mol. Phys. 23 49 (in Chinese) [尹淑慧、刘建勇、楼南泉 2006 原子与分子物理学报 23 49]

    [16]

    ]Samuel I D W, Crystal B, Rumbles G, Burn P L, Holmes A B, Friend R F 1993 Chem. Phys. Lett. 213 472

    [17]

    ]Yan M, Rothberg L J, Papadimitrankopoulos F, Galvin M E, Miller T M 1993 Phys. Rev. Lett. 73 2827

    [18]

    ]Heeger A J 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p20

    [19]

    ]McBranch D W, Sinclair M B 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p587

    [20]

    ]Kepler R G, Valencia V S, Jacobs S J, McNamara J J 1996 Synth. Metals 78 227

    [21]

    ]Zhao E H, Fu R T, Sun X, Fu R L, Zhu J H 1998 Acta Phys. Sin. 47 2031 (in Chinese) [赵二海、傅荣堂、孙鑫、傅柔励、褚君浩 1998 物理学报 47 2031]

    [22]

    ]Thomsen C, Strait J, Vardeny Z, Maris H J, Tauc J 1984 Phys. Rev. Lett. 53 989

    [23]

    ]Kanner G S, Vardeny Z V, Hess B C 1990 Phys. Rev. B 42 5403

    [24]

    ]Devos A, Robillard J F, Cte R 2006 Phys. Rev. B 74 064114

  • [1]

    [1]Mezyk J, Meinardi F, Cocchi M 2008 Appl. Phys. Lett. 93 093301

    [2]

    [2]Kalinowski J 2005 Organic Light Emitting Diodes: Principles, Characteristics, and Processes (New York: Marcel Dekker) p135

    [3]

    [3]Stampor W, Mezyk J 2007 Chem. Phys. 337 151

    [4]

    [4]Kalinowski J, Mezyk J, Meinardi F, Tubino R, Cocchi M, Virgili D 2005 J. Appl. Phys. 98 063532-1

    [5]

    [5]Holzer W, Penzkofer A, Tsuboi T 2005 Chem. Phys. 308 93

    [6]

    [6]Jiang H, Xu X H, Sun X, Fu R L, Chu J H 1999 Acta Phys. Sin. 48 2327 (in Chinese) [姜浩、徐晓华、孙鑫、傅柔励、褚君浩 1999 物理学报 48 2327]

    [7]

    [7]Arkhipov V I, Bssler H, Deussen M, Gbel E O, Kersting R, Kurz H, Lemmer U, Mahrt R F 1995 Phys. Rev. B 52 4932

    [8]

    [8]Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏、张铁桥、王树峰、龚旗煌 2000 物理学报 49 1292]

    [9]

    [9]Gadermaier C, Grasse F, Perissinotto S, Graf M, Galbrecht F, Scherf U, List E J W, Lanzani G 2008 Phys. Rev. Lett. 100 057401

    [10]

    ]Bssler H 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p51

    [11]

    ]Maniloff E S, Klimov V I, McBranch D W 1997 Phys. Rev. B 56 1876

    [12]

    ]Zaushitsyn Y, Gulbinas V, Zigmantas D, Zhang F L, Ingans O, Sundstrm V, Zartsev A 2004 Phys. Rev. B 70 075202

    [13]

    ]Shkunov M N, Huang J D, Vardeny Z V, Yoshino K 1999 Synth. Metals 102 1118

    [14]

    ]Li A Z, Chen Z F, Wang H, Zhang Y W, Zhang W, Yu H C, Huang J W, Ji L N 2009 Acta Phys. Sin. 58 1321 (in Chinese) [黎爱珍、陈志峰、王惠、张燕伟、张伟、余汉诚、黄锦汪、计亮年 2009 物理学报 58 1321]

    [15]

    ]Yin S H, Liu J Y, Lou N Q 2006 J. At. Mol. Phys. 23 49 (in Chinese) [尹淑慧、刘建勇、楼南泉 2006 原子与分子物理学报 23 49]

    [16]

    ]Samuel I D W, Crystal B, Rumbles G, Burn P L, Holmes A B, Friend R F 1993 Chem. Phys. Lett. 213 472

    [17]

    ]Yan M, Rothberg L J, Papadimitrankopoulos F, Galvin M E, Miller T M 1993 Phys. Rev. Lett. 73 2827

    [18]

    ]Heeger A J 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p20

    [19]

    ]McBranch D W, Sinclair M B 1997 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) p587

    [20]

    ]Kepler R G, Valencia V S, Jacobs S J, McNamara J J 1996 Synth. Metals 78 227

    [21]

    ]Zhao E H, Fu R T, Sun X, Fu R L, Zhu J H 1998 Acta Phys. Sin. 47 2031 (in Chinese) [赵二海、傅荣堂、孙鑫、傅柔励、褚君浩 1998 物理学报 47 2031]

    [22]

    ]Thomsen C, Strait J, Vardeny Z, Maris H J, Tauc J 1984 Phys. Rev. Lett. 53 989

    [23]

    ]Kanner G S, Vardeny Z V, Hess B C 1990 Phys. Rev. B 42 5403

    [24]

    ]Devos A, Robillard J F, Cte R 2006 Phys. Rev. B 74 064114

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响. 物理学报, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [3] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [4] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [6] 成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山. 一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质. 物理学报, 2022, 71(1): 018501. doi: 10.7498/aps.71.20211171
    [7] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [8] 成燕琴, 徐娟娟, 王有娣, 黎卓熹, 陈江山. 一种苯乙烯基喹啉衍生物的稳态和瞬态光电性质研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211171
    [9] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [10] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展. 物理学报, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [11] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [12] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能. 物理学报, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [13] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [14] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [15] 沈曼, 张亮, 刘建军. 磁场和量子点尺寸对激子性质的影响. 物理学报, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [16] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [17] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [18] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响. 物理学报, 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [19] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [20] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
计量
  • 文章访问数:  8673
  • PDF下载量:  864
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-07
  • 修回日期:  2009-08-12
  • 刊出日期:  2010-02-05

/

返回文章
返回