Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator

Gao Rong Yang Ya-Nan Zhan Chen-Yi Zhang Zong-Zhen Deng Yi Wang Zi-Xiao Liang Kun Feng Su-Chun

Citation:

Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator

Gao Rong, Yang Ya-Nan, Zhan Chen-Yi, Zhang Zong-Zhen, Deng Yi, Wang Zi-Xiao, Liang Kun, Feng Su-Chun
PDF
HTML
Get Citation
  • The scheme of generating optical frequency comb (OFC) mainly includes mode-locked laser, electro-optic modulation comb, and nonlinear Kerr micro-resonator comb. The OFC with frequency spacing on the order of 10–200 GHz can be employed in optical communication, microwave photonics, and other fields. Silicon carbide (SiC) has aroused the considerable research interest in integrated nonlinear photonics owing to its high second nonlinear coefficient and third order nonlinear coefficient, low optical loss, without multiphoton absorption loss owing to the wide bandgap. Single soliton microcomb in anomalous group velocity dispersion regime based on a 4H-SiC-on-insulator thin film has been demonstrated with the relative lower pump to comb efficiency, while the OFC in normal dispersion regime based on the SiC microresonator has not been reported. The pump conversion efficiency of OFC in the normal dispersion regime is high, and the pump frequency detuning range for the OFC generation is large, which is conducive to the OFC generation and long-term stable operation. Since there is no modulation instability effect in normal dispersion regime, the key to generating the OFC in normal dispersion regime is that the initial state needs the assistance of a multi-frequency laser (or four-wave mixing sideband). The phase-locked dual-frequency laser can be regarded as a pulse pump laser source with wide pulse duration, which can be realized by integrated distributed feedback laser.In this paper, a scheme of generating OFC by pumping the normal dispersion SiC microresonator with phase locked dual-frequency laser is proposed. The flat normal dispersion in 1550 nm band is realized through dispersion engineering of the SiC microresonator. The effective mode field area of the TE0 fundamental mode at 1550 nm in the optimized SiC ridge waveguide is about 0.94 μm2, and the nonlinear coefficient is about 3.69 $ {{\mathrm{W}}}^{-1}{\cdot} {{\mathrm{m}}}^{-1} $. Meanwhile, dispersion parameters of the microresonator with 100 GHz FSR are also obtained. The OFC generation pumped by a phase-locked dual-frequency laser based on normal dispersion SiC microresonator is simulated through using the Lugiato-Lefever equation. The evolution process of the OFC in time and frequency domain related to the pump detuning is studied. The effects of several parameters such as the pump power, microresonator waveguide loss, microresonator dispersion, proportion of the dual-frequency laser, and the frequency interval of dual-frequency laser on the performance of the OFC are also investigated. The conclusions can be obtained through the OFC generation simulation as follows, 1) When the microresonator waveguide loss is larger, the pump detuning range for the OFC generation becomes smaller, and the pulse peak power under the same pulse intensity filling rate decreases. 2) When the input pump power is larger, the pump detuning range for the OFC generation becomes larger, the pulse peak power under the same pulse intensity filling rate increases, and the corresponding spectrum becomes wider. 3) With the increase of absolute dispersion value, the spectrum bandwidth of the generated OFC decreases obviously. 4) The power proportion of dual-frequency laser has little influence on the OFC generation. 5) The frequency spacing of the generated OFC can be tuned through changing the frequency spacing of the two phase-locked lasers with integral multiple of free spectral range.The OFC with spectrum bandwidth of about 70 nm can be generated in a range of 1500—1600 nm through the simulation. The simulation results are beneficial to promoting the research and practical application of high repetition rate broadband optical frequency comb in a 1550 nm band based on the normal dispersion silicon carbide microresonator.
      Corresponding author: Feng Su-Chun, schfeng@bjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for Central Universities, China (Grant No. 2021JBM002) and the National Natural Science Foundation of China (Grant Nos. 62275012, 62335001).
    [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Ma Y, Li W J, Xu Y F, Liu J Q, Zhuo N, Yang K, Zhang J C, Zhai S Q, Liu S M, Wang L J 2023 Chin. Phys. Lett. 40 014201Google Scholar

    [3]

    Bartels A, Heinecke D, Diddams S A 2008 Opt. Lett. 33 1905Google Scholar

    [4]

    Duan G H, Shen A, Akrout A, Dijk F V, Lelarge F, Pommereau F, Le G O, Provost J G, Gariah H, Blache F, Mallecot F, Merghem K, Martinez A, Ramdane A 2009 Bell Labs Tech. J. 14 63Google Scholar

    [5]

    Lo M C, Guzmán R, Ali M, Santos R, Augustin L, Carpintero G 2017 Opt. Lett. 42 3872Google Scholar

    [6]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar

    [7]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 aan8083Google Scholar

    [8]

    Yu S, Bao F, Hu H, Hu H 2018 IEEE Photonics J. 10 7202107Google Scholar

    [9]

    Deng Y, Wu C J, Liu Y, Feng S C 2021 Opt. Commun. 502 127415Google Scholar

    [10]

    Ji X, Barbosa F A S, Roberts S P, Dutt A, Cardenas J, Okawachi Y, Bryant A, Gaeta A L, Lipson M 2017 Optica 4 619Google Scholar

    [11]

    Hu H, Da Ros F, Pu M, Ye F, Ingerslev K, Porto Da Silva E, Nooruzzaman M, Amma Y, Sasaki Y, Mizuno T, Miyamoto Y, Ottaviano L, Semenova E, Guan P, Zibar D, Galili M, Yvind K, Morioka T, Oxenløwe L K 2018 Nat. Photonics 12 469Google Scholar

    [12]

    Zheng Y, Pu M, Yi A, Ou X, Ou H 2019 Opt. Lett. 44 5784Google Scholar

    [13]

    Yu S P, Lucas E, Zang J, Papp S B 2022 Nat. Commun. 13 3134Google Scholar

    [14]

    Tan D T H, Ooi K J A, Ng D K T 2018 Photonics Res. 6 B50Google Scholar

    [15]

    Boes A, Corcoran B, Chang L, Bowers J, Mitchell A 2018 Laser Photonics Rev. 12 1700256Google Scholar

    [16]

    Li H, Wang G B, Yang J Y, Zhang Z S, Deng J, Du S X 2023 Chin. Phys. Lett. 40 128101Google Scholar

    [17]

    Cai L T, Li J W, Wang R X, Li Q 2022 Photon. Res. 10 870Google Scholar

    [18]

    Wang C, Li J, Yi A, Fang Z, Zhou L, Wang Z, Niu R, Chen Y, Zhang J, Cheng Y, Liu J, Dong C H, Ou X 2022 Light-Sci. Appl. 11 341Google Scholar

    [19]

    Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M 2015 Nat. Photonics 9 594Google Scholar

    [20]

    Jin W, Yang Q F, Chang L, Shen B, Wang H, Leal M A, Wu L, Gao M, Feshali A, Paniccia M, Vahala K J, Bowers J E 2021 Nat. Photonics 15 346Google Scholar

    [21]

    Helgason Ó B, Arteaga-Sierra F R, Ye Z, Twayana K, Andrekson P A, Karlsson M, Schröder J, Company V T 2021 Nat. Photonics 15 305Google Scholar

    [22]

    Anderson M H, Weng W, Lihachev G, Tikan A, Liu J, Kippenberg T J 2022 Nat. Commun. 13 4764Google Scholar

    [23]

    Rahim M, Zeb K, Lu Z, Pakulski G, Liu J, Poole P, Song C, Barrios P, Jiang W, Zhang X 2019 Opt. Express 27 35368Google Scholar

    [24]

    王佳强, 吴志芳, 冯素春 2022 物理学报 71 234209Google Scholar

    Wang J Q, Wu Z F, Feng S C 2022 Acta Phys. Sin. 71 234209Google Scholar

    [25]

    Wang S C, Zhan M J, Wang G, Xuan H W, Zhang W, Liu C J, Xu C H, Liu Y, Wei Z Y, Chen X L 2013 Laser Photonics Rev. 7 831Google Scholar

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205Google Scholar

    [27]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2014 Nat. Photonics 8 145Google Scholar

    [28]

    Chembo Y K, Menyuk C R 2013 Phys. Rev. A 87 053852Google Scholar

    [29]

    Tong Z, Wiberg A O, Myslivets E, Kuo B P, Alic N, Radic S 2012 Opt. Express 20 17610Google Scholar

    [30]

    Antikainen A, Agrawal G P 2015 J. Opt. Soc. Am. B 32 1705Google Scholar

  • 图 1  碳化硅波导结构与TE0基模色散调控 (a) 碳化硅波导结构; (b) 固定脊形高度D = 350 nm, 色散β2随宽度变化曲线; (c) 固定宽度W = 3000 nm, 色散β2随高度变化曲线; (d) 最终优化的高350 nm、宽3000 nm脊型波导中TE0 基模的有效模场面积Aeff和非线性系数γ曲线

    Figure 1.  Silicon carbide waveguide structure and dispersion engineering of TE0 fundamental mode: (a) Silicon carbide waveguide structure; (b) simulation on GVD versus W with the fixed ridge height D = 350 nm; (c) simulation on GVD versus D with the fixed width W = 3000 nm; (d) Aeff and γ of TE0 mode with a height D = 350 nm and width W = 3000 nm.

    图 2  弯曲半径173.1 μm的微环谐振腔的色散参量 (a) D1/2π; (b) D2/2π; (c) D3/2π; (d) Dint/2π

    Figure 2.  Dispersion parameters of a micro-ring resonator with a bending radius of 173.1 μm: (a) D1/2π; (b) D2/2π; (c) D3/2π; (d) Dint/2π.

    图 3  锁相双频激光泵浦碳化硅微环谐振腔的光频率梳产生系统示意图

    Figure 3.  Structural diagram of the optical frequency comb generation system with phase-locked dual-frequency laser pumped silicon carbide micro-ring resonator.

    图 4  锁相双频激光泵浦正常色散SiC微环产生光频率梳的时频演化 (a) 腔内平均功率随泵浦失谐的变化; (b) 腔内时域脉冲与频谱随泵浦失谐的演化; (c) 泵浦失谐分别为3, 6, 11时的腔内时域脉冲和对应频谱

    Figure 4.  Time-frequency evolution of optical frequency comb generated in normal dispersion SiC micro-ring pumped by phase-locked dual-frequency laser: (a) Evolution of the average intracavity power with the pump detuning; (b) evolution of time-domain pulse and frequency spectrum in the cavity with the pump detuning; (c) the time-domain pulse and corresponding optical frequency spectrum when the pump detuning is 3, 6 and 11, respectively.

    图 5  微环波导损耗对光频率梳产生的影响 (a) 不同损耗下随泵浦失谐的腔内平均功率演化; (b) 不同损耗下时域脉冲强度填充率相同时的光频率梳频谱; (c) 不同损耗下时域脉冲强度填充率相同时的时域脉冲

    Figure 5.  Influence of micro-ring waveguide loss on optical frequency comb: (a) Evolution of the average intracavity power with the pump detuning under different waveguide loss; (b) optical frequency comb spectra with the same pulse intensity filling rate under different waveguide loss; (c) time-domain pulses with the same pulse intensity filling rate under different waveguide loss.

    图 6  输入泵浦功率对光频率梳产生的影响 (a) 不同输入功率下随泵浦失谐的腔内平均功率演化; (b) 不同输入功率下时域脉冲强度填充率相同时的光频率梳频谱; (c) 不同输入功率下时域脉冲强度填充率相同时的时域脉冲

    Figure 6.  Influence of pump power on optical frequency comb: (a) Evolution of the average intracavity power with the pump detuning under different pump power; (b) optical frequency comb spectra with the same pulse intensity filling rate under different pump power; (c) time-domain pulses with the same pulse intensity filling rate under different pump power.

    图 7  微环色散对光频率梳产生的影响 (a) 不同色散下腔内平均功率随泵浦失谐的演化; (b) 不同色散下在时域脉冲强度填充率相同时的光频率梳频谱; (c) 不同色散下在时域脉冲强度填充率相同时的时域脉冲

    Figure 7.  Influence of micro-ring dispersion on optical frequency comb: (a) Evolution of the average intracavity power with the pump detuning under different micro-ring dispersion; (b) optical frequency comb spectra with the same pulse intensity filling rate under different micro-ring dispersion; (c) time-domain pulses with the same filling rate under different micro-ring dispersion.

    图 8  双频激光功率占比对光频率梳产生的影响 (a) 不同功率占比下随腔内平均功率泵浦失谐的演化; (b) 不同功率占比下时域脉冲强度填充率相同时的光频率梳频谱; (c) 不同功率占比下时域脉冲强度填充率相同时的时域脉冲

    Figure 8.  Influence of dual-frequency laser power ratio on optical frequency comb: (a) Evolution of the average intracavity power with the pump detuning under different power ratio; (b) optical frequency comb spectra with the same pulse intensity filling rate under different power ratio; (c) time-domain pulses with the same pulse intensity filling rate under different power ratio.

    图 9  双频激光频率间隔对光频率梳产生的影响 (a) 不同频率间隔下腔内平均功率随泵浦失谐的演化; (b) 不同频率间隔下时域脉冲强度填充率相同时的时域脉冲; (c), (d), (e) 双频激光频率间隔为1倍FSR、2倍FSR、3倍FSR产生的光频率梳在时域脉冲强度填充率相同时的频谱

    Figure 9.  Influence of frequency interval of dual-frequency laser on optical frequency comb: (a) Evolution of the average intracavity power with the pump detuning under different frequency interval; (b) time-domain pulses with the same pulse intensity filling rate under different frequency interval; (c), (d), (e) optical frequency comb spectra with one, two and three FSR frequency intervals under the same pulse intensity filling rate.

    表 1  产生光频率梳所采用的各项参数

    Table 1.  Parameters used to generate optical frequency comb.

    Waveguide Parameter
    β2/(ps2·km–1) β3/(ps3·km–1) β4/(ps4·km–1) P0/W α/(dB·m–1) $ {D}_{1}/2{\mathrm{\pi }} $/GHz $ {D}_{2}/2{\mathrm{\pi }} $/MHz $ {D}_{3}/2{\mathrm{\pi }} $/kHz
    SiC waveguide 145.283 –0.18298 0.00209637 0.2 20 100 –0.993974 0.844218
    DownLoad: CSV
  • [1]

    Diddams S A, Vahala K, Udem T 2020 Science 369 eaay3676Google Scholar

    [2]

    Ma Y, Li W J, Xu Y F, Liu J Q, Zhuo N, Yang K, Zhang J C, Zhai S Q, Liu S M, Wang L J 2023 Chin. Phys. Lett. 40 014201Google Scholar

    [3]

    Bartels A, Heinecke D, Diddams S A 2008 Opt. Lett. 33 1905Google Scholar

    [4]

    Duan G H, Shen A, Akrout A, Dijk F V, Lelarge F, Pommereau F, Le G O, Provost J G, Gariah H, Blache F, Mallecot F, Merghem K, Martinez A, Ramdane A 2009 Bell Labs Tech. J. 14 63Google Scholar

    [5]

    Lo M C, Guzmán R, Ali M, Santos R, Augustin L, Carpintero G 2017 Opt. Lett. 42 3872Google Scholar

    [6]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar

    [7]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 aan8083Google Scholar

    [8]

    Yu S, Bao F, Hu H, Hu H 2018 IEEE Photonics J. 10 7202107Google Scholar

    [9]

    Deng Y, Wu C J, Liu Y, Feng S C 2021 Opt. Commun. 502 127415Google Scholar

    [10]

    Ji X, Barbosa F A S, Roberts S P, Dutt A, Cardenas J, Okawachi Y, Bryant A, Gaeta A L, Lipson M 2017 Optica 4 619Google Scholar

    [11]

    Hu H, Da Ros F, Pu M, Ye F, Ingerslev K, Porto Da Silva E, Nooruzzaman M, Amma Y, Sasaki Y, Mizuno T, Miyamoto Y, Ottaviano L, Semenova E, Guan P, Zibar D, Galili M, Yvind K, Morioka T, Oxenløwe L K 2018 Nat. Photonics 12 469Google Scholar

    [12]

    Zheng Y, Pu M, Yi A, Ou X, Ou H 2019 Opt. Lett. 44 5784Google Scholar

    [13]

    Yu S P, Lucas E, Zang J, Papp S B 2022 Nat. Commun. 13 3134Google Scholar

    [14]

    Tan D T H, Ooi K J A, Ng D K T 2018 Photonics Res. 6 B50Google Scholar

    [15]

    Boes A, Corcoran B, Chang L, Bowers J, Mitchell A 2018 Laser Photonics Rev. 12 1700256Google Scholar

    [16]

    Li H, Wang G B, Yang J Y, Zhang Z S, Deng J, Du S X 2023 Chin. Phys. Lett. 40 128101Google Scholar

    [17]

    Cai L T, Li J W, Wang R X, Li Q 2022 Photon. Res. 10 870Google Scholar

    [18]

    Wang C, Li J, Yi A, Fang Z, Zhou L, Wang Z, Niu R, Chen Y, Zhang J, Cheng Y, Liu J, Dong C H, Ou X 2022 Light-Sci. Appl. 11 341Google Scholar

    [19]

    Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M 2015 Nat. Photonics 9 594Google Scholar

    [20]

    Jin W, Yang Q F, Chang L, Shen B, Wang H, Leal M A, Wu L, Gao M, Feshali A, Paniccia M, Vahala K J, Bowers J E 2021 Nat. Photonics 15 346Google Scholar

    [21]

    Helgason Ó B, Arteaga-Sierra F R, Ye Z, Twayana K, Andrekson P A, Karlsson M, Schröder J, Company V T 2021 Nat. Photonics 15 305Google Scholar

    [22]

    Anderson M H, Weng W, Lihachev G, Tikan A, Liu J, Kippenberg T J 2022 Nat. Commun. 13 4764Google Scholar

    [23]

    Rahim M, Zeb K, Lu Z, Pakulski G, Liu J, Poole P, Song C, Barrios P, Jiang W, Zhang X 2019 Opt. Express 27 35368Google Scholar

    [24]

    王佳强, 吴志芳, 冯素春 2022 物理学报 71 234209Google Scholar

    Wang J Q, Wu Z F, Feng S C 2022 Acta Phys. Sin. 71 234209Google Scholar

    [25]

    Wang S C, Zhan M J, Wang G, Xuan H W, Zhang W, Liu C J, Xu C H, Liu Y, Wei Z Y, Chen X L 2013 Laser Photonics Rev. 7 831Google Scholar

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205Google Scholar

    [27]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2014 Nat. Photonics 8 145Google Scholar

    [28]

    Chembo Y K, Menyuk C R 2013 Phys. Rev. A 87 053852Google Scholar

    [29]

    Tong Z, Wiberg A O, Myslivets E, Kuo B P, Alic N, Radic S 2012 Opt. Express 20 17610Google Scholar

    [30]

    Antikainen A, Agrawal G P 2015 J. Opt. Soc. Am. B 32 1705Google Scholar

  • [1] Fang Jing-Yue, Wen Zhi-Hao, Zhu Hai-Bi-Tao, Li Xin-Xing, Deng Lian-Wen. 16-channel snapshot multispectral imaging based on integrated Fabry Perot microcavity array. Acta Physica Sinica, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231775
    [2] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [3] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [4] Liu Peng-Xiang, Li Wei, Guo Li-Yuan, Qi Feng, Pang Zi-Bo, Li Wei-Fan, Wang Ye-Long, Liu Zhao-Yang. Terahertz wave up-conversion detection based on organic nonlinear optical crystals. Acta Physica Sinica, 2021, 70(5): 050701. doi: 10.7498/aps.70.20201908
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] Dong Wei, Wang Zhi-Bin. Improved hybrid plasmonic microcavity laser. Acta Physica Sinica, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [8] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [9] Shu Fang-Jie. Analysis of features of the microdisk cavity perpendicular coupler. Acta Physica Sinica, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [10] Feng Tian-Run, Lu Ke-Qing, Chen Wei-Jun, Liu Shu-Qin, Niu Ping-Juan, Yu Li-Yuan. Study on surface waves formed at the interface between linear dielectric and centrosymmetric photorefractive crystals. Acta Physica Sinica, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [11] Li Shu-Guang, Zhu Xing-Ping, Xue Jian-Rong. Supercontinuum generation in all-normal dispersion photonic crystal fiber. Acta Physica Sinica, 2013, 62(20): 204206. doi: 10.7498/aps.62.204206
    [12] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] Zhou Chang-Zhu, Wang Chen, Li Zhi-Yuan. Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Acta Physica Sinica, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [14] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [15] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [16] Tang Tian-Tian, Wang De-Hua, Huang Kai-Yun. Study of the photodetachment of H- in a microcavity. Acta Physica Sinica, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [17] Li Lin-Li, Feng Guo-Ying, Yang Hao, Zhou Guo-Rui, Zhou Hao, Zhu Qi-Hua, Wang Jian-Jun, Zhou Shou-Huan. Dispersion properties and supercontinuum generation in nanofiber. Acta Physica Sinica, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [18] Xu Deng. Stimulated emission properties of an organic salt-doped polymer film in microcavity. Acta Physica Sinica, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [19] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [20] LU MING, XU SHAO-HUI, ZHANG SONG-TAO, HE JUN, XIONG ZU-HONG, DENG ZHEN-BO, DING XUN-MIN. OPTICAL PROPERTIES OF ORGANIC MICROCAVITY BASED ON POROUS SILICON BRAGG REFLECTOR. Acta Physica Sinica, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
Metrics
  • Abstract views:  3251
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2023
  • Accepted Date:  16 October 2023
  • Available Online:  04 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回