-
By designing and fabricating a narrow-band Fabry-Perot multi-beam interference spectroscopic microcavity array, and integrating it with a visible light detector focal plane array, we demonstrate a small compact multispectral imaging detector. The micro-cavity filter array with 4×4 basic repeating units and a total of 2048×2048 pixels is obtained on a quartz substrate by the four-fractal combination lithograph-etching process. Then the micro miniatured multispectral imaging detector is formed by fitting with the detector chip. The depth and precision of the etching will determine the distribution and offset of the central wavelength of the narrowband spectral channel respectively. The results show that the etching rate of reactive ion is (3.6 ± 0.2) Å/s, and the process is stable and controllable. Due to the different etching depths, the basic repeating unit forms 16 different levels of steps, and the process achieves the design expectation well. The results are obtained as follows: the response spectrum peak of the microcavity array sample varies from 520 to 680 nm, the free spectrum range is 160 nm, the full width at the half-peak is less than 10 nm, the transmittance is about 70%, the relative half-width of the transmittance peak at 590 nm is 1.19%, and the waveform coefficient is 2.78. A 16-channel multispectral camera is constructed by using the optical micro-precision assembly device to realize the precise alignment and the fitting of the micro-cavity filter array and the image sensor. Xenon lamp and monochromator are used as tunable wavelength monochromatic cooperative light source to detect the effect of 16-channel snapshot multispectral imaging on a pixel scale. The results show that the multispectral imaging detector has 16 different narrow-band response spectra. The characteristic spectrum of the target can be clearly distinguished by spectral channel. When imaging the target with known spectral characteristics, for a certain frame of multi-spectral image, selecting a suitable spectral channel can eliminate the background in the field of view through image subtraction and improve the contrast of the target. In the dark room condition, we take the LED light source with center wavelength varying in a range between 528 and 589 nm as the target (the wavelength coincides with the working wavelength of the spectral channel), and effectively suppress the background through the spectral differential intensity subtraction, which can improve the accuracy and sensitivity of the target capture. The 16-channel snapshot multi-spectral imaging detector based on integrated Fabry-Perot microcavity array has the advantages of small size, high integration and strong environmental adaptability, and is expected to play a role in realizing the real-time detection of weak moving targets, auxiliary diagnosis of skin surface observation, and high dynamic range imaging of target observation under backlight conditions. -
Keywords:
- microcavity /
- snapshot /
- multi spectral imaging /
- detector
1. 引 言
光谱成像的起源可追溯到19世纪, 天文学家Janssen[1]用双缝单色仪观察日冕. 大约30年后, 法布里和珀罗[2]开发出了能调谐中心波长的干涉滤光片, 使人们能够看到更暗的物体. 按照分光的不同, 传统光谱成像系统主要分为色散型和干涉型. 色散型成像光谱技术的分光元件主要是色散棱镜和衍射光栅, 也包括沿轴向色散的二元光学元件, 以及基于声光可调谐滤波器的体位相光栅. 干涉型成像光谱技术的主要方法是迈克尔逊干涉法、双折射干涉法、三角共路干涉法、法布里-珀罗(Fabry-Perot, FP)多光束干涉法和液晶可调谐滤波器等. 目前在光谱成像领域, 绝大多数使用的是扫描式设备, 采用经典或改进形式的车尔尼-特纳(Czerny-Turner)、奥夫纳(Offner)和迈克尔逊光学结构[3], 体积大且价格昂贵. 另一方面, 快照式光谱成像仪采用FP多光束干涉分光微腔阵列的光学设计, 具有结构简单、尺寸小、质量轻、集成度高、可靠性高、功耗小、成本低和抗冲击能力强等优点, 可提供新的功能, 并开辟新的应用领域[4,5]. 王少伟团队[6]基于组合沉积技术, 开创性地在单一基片上加工了集成窄带滤波器, 制备了一个128通道的阵列, 随后开发出多种微型快照式多光谱成像仪[7–13]. 胡长虹研究组[14]也研发了基于像素级分光技术的视频高光谱相机. 美国海军实验室研制了具有3×3通道微纳滤波阵列的短波红外焦平面探测器[15], 以获取短波红外动态视频. 欧洲微电子研究中心(Interuniversity Microelectronics Centre, IMEC)通过使用半导体薄膜制备技术, 实现了像素级窄带光谱滤波器的应用[16].
我们致力于研究集成化微型多光谱成像探测器, 推动基于多光谱成像的微弱目标检测和高动态范围成像等应用的微型化和智能化发展[17,18]. 本文基于周期性多层膜研制了可见光波段4×4的马赛克快照式多光谱成像探测器, 具有体积小、集成度高、环境适应性强等特点, 利用不同光谱通道进行图像差分消背景获得较好效果, 有望在远距离微弱目标检测等方面具备应用潜力.
2. 微腔阵列的制备
微腔阵列采用半导体工艺制备, 其主要工艺流程如图1所示. 首先, 以λ1 = 589 nm为中心波长, 设计窄带滤光膜系F1: Sub | H (LH)4 6L (HL)5 | Air. 其中, Sub表示0.5 mm厚的石英基底(n0 = 1.52), Air表示空气介质, H表示高折射率(nH = 2.117)材料Ta2O5, L表示低折射率(nL = 1.473)材料SiO2.
光学膜系是利用离子束沉积光学镀膜系统(VEECO SPECTOR)分两次制备的, 先镀制下部布拉格周期层及FP腔层(图1(a)). 然后, 通过紫外曝光(SUSS, MA6)形成光刻胶掩膜, 结合反应离子刻蚀技术(Oxford Instruments, Plasmalab 80 Plus), 改变FP腔层的厚度; 利用掩膜图形的分形组合(要考虑探测器焦平面阵列大小和像素尺寸), 通过四次连续的紫外曝光套刻和刻蚀工艺, 将设计的刻蚀区域和深度转移到FP腔层上, 实现FP腔层厚度的像素化改造, 获得以4×4阵列为基本重复单元的马赛克周期性微腔结构(图1(b)). 再下一步, 镀制上部布拉格周期层, 形成完整的窄带微腔滤波阵列(图1(c)). 随后, 将样品裂片, 使其尺寸与探测器焦平面相匹配, 并在光学显微辅助下, 利用多维精密位移台, 将微腔滤光阵列与可见光探测器焦平面阵列(长光辰芯, GSENSE400)像素级对准(单个像素尺寸11 μm × 11 μm), 利用紫外光敏胶完成粘贴集成, 构成一种微小紧凑型多光谱成像探测器. 期间, 要进行微腔滤光阵列的微区透过率检测和多光谱相机光谱通道的检验. 在工艺步骤中, 分形组合的四次反应离子刻蚀是关键, 因为刻蚀的深度和精度将分别决定窄带光谱通道中心波长的分布和偏移量.
3. 结果与讨论
3.1 微腔阵列的形貌与光谱表征
对于窄带膜系F1, 当FP腔层厚度依次被刻蚀掉∆hi = 2i nm (i = 0, 1, ···, 6), 计算结果表明, 窄带膜系中心波长随着FP腔层厚度减薄, 向短波方向移动(图2(a)). 通过数据拟合, 得到峰位偏移量∆λi随厚度改变∆hi近似满足线性关系∆λi = 0.065+0.569∆hi (图2(b)). 因此, 若要求通过刻蚀调腔获得的光谱通道的实际工作波长, 相对设计值的偏差为∆λ = ±1 nm, 则反应离子刻蚀的精度应满足∆h < 16.43 Å (1 Å = 10–10 m). 通过调节反应离子刻蚀工艺参数, 我们的工艺采用刻蚀速率v0 = 3.6 Å/s, 能满足设计需求.
在完成下部布拉格周期层及FP腔的制备后, 依次使用掩膜A, B, C和D, 连续对FP腔层进行四次反应离子蚀刻(图3(a)), 而每次刻蚀的区域和深度不同(图3(b)—(e)), 称之为分形组合的刻蚀. 最终形成了具有不同相对高度的16个微腔, 每个微滤光单元的中心波长, 是由微腔厚度决定的. 为获得一定波长范围内相对均匀分布的16个光谱通道, 我们设计的刻蚀深度分别为h1 = 108 nm, h2 = 54 nm, h3 = 10 nm和h4 = 25 nm (图3). 因此, 如果沿A方向扫描样品表面轮廓, 得到的台阶相对高度应分别为∆hA1 = 10 nm, ∆hA2 = 108 nm和∆hA3 = 118 nm; 如果沿B方向扫描样品表面轮廓, 得到的台阶相对高度应分别为∆hB1 = 25 nm, ∆hB2 = 54 nm和∆hB3 = 79 nm. 根据v0 = 3.6 Å/s的刻蚀速率, 可以确定每一次刻蚀的时间. 实验中, 四次刻蚀的时间分别为t1 = 300 s, t2 = 150 s, t3 = 27.8 s和t4 = 69.4 s.
四次分形组合的反应离子刻蚀, 每次工艺完成后, 均对FP腔层进行反射式光学显微拍照(图4). 结果表明, 反应离子蚀刻有效地将掩膜图形转移到了FP腔层上, 形成了以4×4微腔阵列为重复单元的马赛克周期性结构. 又因为蚀刻具有不同的深度, 所以光学薄膜(还不是完整的窄带膜系)因干涉而表现出明显的周期性颜色分布.
利用台阶仪(KLA Tencor, P-7)测量样品表面轮廓(扫描速度50 μm/s, 采样率200 Hz, 作用力2 mg), 以验证工艺是按照设计执行的. 分别沿A方向和B方向(图3(d))进行扫描, 得到如图5所示的轮廓曲线. 结果表明, 样品表面呈现出周期性台阶, 轮廓曲线的相对高度, 基本符合图3所示的台阶设计要求, 稍有偏离. 通过测量曲线上台阶的相对高度, 可以获得FP腔层被刻蚀调控的厚度. 多次扫描测量的结果(表1和表2)表明, 反应离子刻蚀速率为(3.6 ± 0.2) Å/s, 工艺较好地实现了设计预期, 工艺稳定可控.
Item Height difference/nm Etching time/s Etching rate/(Å·s–1) 1 2 3 4 5 6 7 8 Average ∆h1 9.1 9.5 9.2 10.3 9.2 8.9 9.7 9.4 9.41 28 3.36 Δh2 107.2 107.1 107.3 107.5 106.0 107.3 107.0 108.6 107.25 300 3.58 Δh3 113.5 113.0 116.2 123.6 112.0 115.0 113.3 119.3 115.74 328 3.53 Item Height difference/nm Etching time/s Etching rate/(Å·s–1) 1 2 3 4 5 6 7 8 Average ∆h1 24.7 23.5 25.0 24.3 24.5 24.3 26.0 24.4 24.59 70 3.51 Δh2 55.5 54.1 57.2 58.0 57.0 56.7 56.8 56.5 56.48 150 3.77 Δh3 76.5 76.5 72.0 73.5 72.6 78.3 77.3 78.1 75.60 220 3.44 在完成四次分形组合蚀刻工艺后, 继续制备上部布拉格周期层, 在石英基底上获得了2048×2048的微腔滤光阵列(图6(a)). 光学显微图像(图6(b))显示, 不同微滤光单元因滤光特性不同而表现为不同的颜色. 它们以4×4为基本重复单元分布, 形成了16通道快照马赛克式微腔滤光阵列. 扫描电子显微图像(Hitachi S4800)进一步清晰地表明, 不同微滤光单元之间因其微腔高度不同, 而具有明显的台阶起伏(图6(c)). 原子力显微镜(Oxford Asylum Research MFP-3 D)对微腔滤光阵列表面扫描结果证明(图6(d)和图6(e)), 滤光单元是以11 μm × 11 μm的尺寸规则排列, 且基本重复单元因刻蚀深度不同形成了16个高低不同的台阶.
FP微腔的色散效应可以将不同波长的光分开, 各色光干涉极大不发生级次交叠的最大波长范围称为自由光谱范围(free spectral range, FSR). 对于靠近条纹中心的某一点(光线折射角β = 0)处, 若波长λ2的第m – 1级条纹与波长λ1的第m级条纹发生重叠时, 其光程差相等, 因此$ {\left(\Delta \lambda \right)}_{{\mathrm{F}}{\mathrm{S}}{\mathrm{R}}}= {\lambda }_{2}-{\lambda }_{1}=\dfrac{{\lambda }_{1}^{2}}{2{n}_{2}d{\mathrm{cos}}\beta }=\dfrac{{\lambda }_{1}}{m-1} $, 其中, d是FP腔反射镜间距, β是光线折射角, m是干涉级次, n2为FP腔内的折射率. 可见, 通过减小FP腔间距(低阶操作), FSR将变大; 此外, FSR的大小与工作波长有关, 红外波段比可见光波段的FSR更大. 当入射角和工作波长一定的情况下(一般为正入射或小角度入射, cosβ ≈ 1), 即使FP腔光学间距小到只有一个半波长, 它能实现的最大FSR也只是等于工作波长(工艺实现的FP腔光学间距一般在4个半波长以上). 因此, 在可见光范围, FP微腔的FSR一般为100 nm量级宽度, 无法实现宽光谱范围工作. 可以考虑拼接使用多个不同工作波长的法布里珀罗干涉仪, 或者使用金属反射镜替代分布式布拉格反射镜, 以达到扩展光谱工作范围的效果. 图7(a)显示了4×4微腔阵列的微区透过率的设计值与实际测量曲线, 结果表明, 样品各个光谱通道的透过率中心波长与设计值吻合较好(图7(b)), 16个光谱通道的透射峰较均匀地分布在520—680 nm波长内, 其FSR为160 nm. 当然, 在测试微腔干涉滤光阵列的透射特性时, 入射光束如果是非平行光(或准平行光), 则中心波长处的半高宽将向短波方向发生展宽[19]. 这是因为, FP干涉滤光片的工作波长, 随入射角增大而向短波方向移动, 这是光的干涉效应引起的.
通道1#—5#都具有2个透射峰(图7(a)), 这是在特定波长条件下, FP腔光学厚度满足相干相长条件的两个相邻级次透射峰. 通道11#的透过率测量曲线如图7(c)所示, 透射峰位于λ0 = 590 nm, 峰值50%处的波长为λa = 586.44 nm和λb = 593.48 nm, 带宽∆λ0.5 = |λa-λb| = 7.04 nm. 透射峰值10%处的波长为λA = 580.60 nm和λB = 600.20 nm, 宽度∆λ0.1 = |λA-λB| = 19.60 nm. 因此, 相对半宽度∆λ0.5/λ0 = 1.19%, 波形系数η = ∆λ0.1/∆λ0.5 = 2.78.
当相邻光谱通道的透射谱存在重叠, 发生光谱混叠时, 意味着FP腔分光作用变弱, 该光谱通道的带宽增加或光谱分辨率降低. 由于FP腔能分辨的最小波长差(分辨极限) $\Delta \lambda \propto \lambda (1 - r^2)/(2m \pi r) $, r是振幅反射率, 因此可以通过提高反射镜反射率或高阶操作改善光谱分辨率. 高反射率, 可以获得高的精细度$F = 4r^2/(1 - r^2)^2 $, 使条纹更为细锐; 高阶工作, 可以获得窄的光谱宽度, 提高光谱分辨率. 然而, 大光学厚度FP腔, 将导致更小的FSR, 从而减小器件调谐范围. 因此, 对于具体的应用, 应仔细平衡它们. 此外, 若工艺制备中存在镀膜均匀性问题, 将导致不同区域的4×4微腔阵列透过率存在偏差. 这是在光学镀膜过程中, 应当竭力避免的.
3.2 多光谱成像探测器的装配
如图8(a)所示, CMOS固连在xyz手动位移台上, 微腔滤光阵列真空吸附在样品夹具上. 样品夹具固连在由二维弧摆台, xyz电控位移台(精调, 精度为10 nm), xyz手动位移台(粗调, 精度为10 μm)和旋转台组成的调节机构上. CMOS与微腔滤光阵列之间存在初始间距, 它们的空间位置, 可以在显微镜(配备×50和×100的长工作距离物镜)辅助下, 分别独立地调节. 当微腔滤光阵列和图像传感器完成精确对位, 使微滤光单元和CMOS芯片像元一一对应时, 在CMOS四周涂覆紫外固化胶, 精细调节z轴位移, 使两者贴合, 并进行紫外辐照固化. 最后, 解除真空吸附, 完成封装. 图8(b)所示, 即为完成封装的16通道多光谱相机, 它由集成了FP微腔阵列的CMOS组件、成像镜头、图像处理组件和相机控制管理组件等四部分组成.
当马赛克式像素级微腔滤光阵列和CMOS完成对齐贴合后, 由于微滤光单元尺寸较小, 当平行光透过滤光阵列时, 显然存在衍射效应. 但是, 当微滤光单元(孔径)与CMOS像素表面紧密贴合, 其间距(传播距离)位于菲涅尔深区, 衍射效应很弱, 可近似为几何投影, 不影响强度成像[20]. 另外, FP干涉滤光片的工作波长, 因干涉效应将随入射角增大向短波方向移动. 应采用高折射率材料组, 并在基本膜堆中增加高折射率材料厚度, 或减小FP腔厚度(带宽将变大), 以减弱角度效应. 我们使用基于微腔滤光阵列的多光谱相机成像时, 为避免角度效应引起的波长偏差, 应对小角度入射目标进行观测.
3.3 多光谱成像探测器的成像特性
采用氙灯和单色仪(北光世纪, WDG 30-Z)作为可调谐波长单色光合作光源, 单色光经光纤引导、扩束准直, 投射在磨砂玻璃散射片上, 形成明亮的单色光光斑(图9). 分析光斑图像的灰度分布, 以检验16通道快照式多光谱成像在像素级尺度上的效果.
以一个4×4重复单元为考察对象, 图10结果表明, 对不同单色光, 总会出现最大灰度响应的像素pmn (m, n = 1, 2, 3, 4; pmn是光谱通道Pmn的一个像素), 并在其邻近伴有2—3个次极大灰度响应像素. 例如, 在图10(a)中, 像素p44对波长为553 nm的单色光是高透的, 而附近像素p34和p43的灰度值也相对较大. 这是因为, p34和p43的工作波长与553 nm邻近, 虽然它们的带宽∆λ0.5未发生重叠, 但p34和p43的宽度∆λ0.1都与p44的宽度∆λ0.1有交叠, 相邻光谱通道存在光谱混叠. 对每个合作单色光, 若希望去除次极大值, 仅保留最大灰度响应像素, 需要综合考虑膜系带宽和FP腔厚调控(决定光谱通道的工作波长间隔, 或光谱分辨率)等因素.
图10(a)—(p)中, 随着波长变化, 最大灰度响应像素的位置发生改变, 记录得到如图11所示的多光谱通道RGB颜色示意图, 与图3(e)所示刻蚀深度变化的规律保持一致; 与图7(a)透过率曲线的通道相对应. 图12(a)与图10(m), 以及图12(b)与图10(o), 均具有相同的最大灰度响应像素(分别是p22和p21). 这是因为, 该像素的FP腔光学厚度满足两个相邻级次透射峰的相干相长条件, 该像素对两个透射峰峰值波长的单色光都高透, 都具有最大灰度响应. 为避免出现光谱通道的混乱, 可以加装带通滤光片, 将16通道以外的入射光截止.
在环境光照明条件下, 利用单色光模拟物体的特征光谱, 可以验证多光谱相机抓取物体光谱特征的能力. 选择了通道9#和13#的峰值波长(分别为582 nm和608 nm)作为可调谐单色光合作光源的波长, 在室内照明条件下, 获取了散射片光屏上单色光光斑的多光谱图像(未加装带通滤光片), 进而获取了16个光谱通道的光谱图(图13(a)和图13(b)). P33, P34, P43和P44等通道对波长582 nm的单色光斑能清晰成像; P11, P12和P21等通道对波长608 nm的单色光斑能清晰成像. 结果表明, 利用多光谱通道, 可以清晰分辨目标特征光谱. 通过提高光谱分辨率、加装截止滤光片等措施, 能进一步提高特征光谱抓取能力.
针对已知目标特征光谱成像时, 对于某一帧多光谱图像, 选择合适的光谱通道, 易于通过图像相减消除视野中背景. 在暗室条件下, 以中心波长为528 nm和589 nm的LED (大恒光电, GCI-060402, GCI-060403)为光源(图14(a)), 利用多光谱相机采集图像(图14(b)). 优选地, 将光谱通道P14和P44光谱图相减(图14(c)). 结果表明, 背景被有效消除, 目标对比度明显增强. 因此, 通过光谱差分强度相减, 可以有效地降低背景噪声的影响, 提高目标抓取的准确性和灵敏度. 这种方法是基于快照式多光谱相机在某一帧图像中, 包含了用于差分的数据源, 不需要图像对齐等操作, 能降低数据处理需求, 适用于运动目标的实时分析. 但该方法的能量利用率低, 会降低空间分辨率.
4. 结 论
通过将窄带FP微腔阵列与可见光探测器焦平面阵列粘贴集成, 制作了一个快照马赛克式多光谱成像探测器用于演示, 它具有16个不同的窄带响应谱, 光谱峰值在520—680 nm之间变化, 其半峰宽小于10 nm, 透过率约70%. 可调谐波长单色光合作光源检测表明, 光谱通道能有效获取特征光谱信号; 利用光谱差分图像相减的方法, 能有效地降低背景噪声. 有望在微弱运动目标实时检测等领域发挥作用. 这种在图像传感器阵面改装而成的多光谱相机, 只适用于小范围的定制化应用. 在传统图像传感器制备流程中, 加入FP微腔阵列工艺, 直接在像素上集成微滤光单元, 能删减对准贴合步骤, 消除装配间隙引入的不良干涉衍射效应, 减少装配误差引入的杂散光, 提高器件可靠性, 降低成本, 推动微型光谱成像探测器向高精度、阵列化、微型化、集成化和批量化制造发展.
感谢中国科学院上海光学精密机械研究所王少伟研究员以及国防科技大学前沿交叉学科学院吴素勇副研究员在光学镀膜上给与的支持, 感谢中国科学院苏州纳米技术与纳米放生研究所隋展鹏副研究员提供形貌表征测试帮助, 感谢中国科学院苏州纳米技术与纳米仿生研究所加工平台提供半导体工艺加工条件.
[1] Janssen P J C 1869 C. R. Acad. Sci. 68 93
[2] Fabry C, Pérot A 1897 Ann. Chim. Phys. 12 459
[3] Hagen N, Kudenov M W 2013 Opt. Eng. 52 090901Google Scholar
[4] Williams C, Gordon G S D, Wilkinson T D, Bohndiek S E 2019 ACS Photonics 6 3132Google Scholar
[5] 周奎, 单政, 张倩, 王谢君, 周健, 邓宸伟, 虞益挺 2022 光学学报 42 080000Google Scholar
Zhou K, Shan Z, Zhang Q, Wang X J, Zhou J, Deng C W, Yu Y T 2022 Acta Opt. Sin. 42 080000Google Scholar
[6] Wang S W, Li M, Xia C S, Wang H Q, Chen X S, Lu W 2007 Appl. Phys. B 88 281Google Scholar
[7] 王绪权, 黄松垒, 于月华, 叶捷敏, 邵秀梅, 方家熊 2018 光子学报 47 530001Google Scholar
Wang X Q, Huang S L, Yu Y H, Ye J M, Shao X M, Fang J X 2018 Acta Photonica Sin. 47 530001Google Scholar
[8] Xuan Z Y, Liu Q Q, Cui Z Z, Huang S L, Yang B, Li C L, Wang S W, Lu W 2022 Chin. Opt. Lett. 20 061302Google Scholar
[9] Yin Z Q, Liu Q Q, Guan X Y, Xie M B, Lu W, Wang S W 2023 Opt. Lett. 48 3371Google Scholar
[10] Xuan Z Y, Wang Z, Liu Q Q, Huang S L, Yang B, Yang L Y, Yin Z Q, Xie M B, Li C L, Yu J Y, Wang S W, Lu W 2022 Adv. Opt. Mater. 10 2200284Google Scholar
[11] Liu Q Q, Xuan Z Y, Wang Z, Zhao X C, Yin Z Q, Li C L, Chen G, Wang S W, Lu W 2022 Opt. Lett. 47 2923Google Scholar
[12] Liu Q Q, Li C L, Xie M B, Wang S W, Yang S M, Zuo Y, Zhao J, Xuan Z Y, Zhu Y Y, Li Z F, Wu Y Q, Lu W 2023 ACS Photonics 10 125Google Scholar
[13] Li C L, Liu Q Q, Zhu Y Y, Zhao X C, Yang S M, Li Z F, Wang S W, Shen X C 2023 Nanoscale 15 11466Google Scholar
[14] 肖树林, 胡长虹, 高路尧 2021 中国科技成果 23 26Google Scholar
Xiao S L, Hu C H, Gao L Y 2021 China Achieve. Sci. Technol. 23 26Google Scholar
[15] Kutteruf Mary R, Yetzbacher Michael K, Deprenger Michael J, Novak K M, Miller C A, Kanaev A, Henry D J, Lange D A, VonBerg D L, Rajan S R, Walls T J, Young D L 2014 Proc. SPIE 9076 90760MGoogle Scholar
[16] Geelen B, Blanch C, Gonzalez P, Tack N, Lambrechts A 2015 Proc. SPIE 9374 937414Google Scholar
[17] Zhang H, Cai Y, Chen Z L, Xie X L, Chang S L, Fang J Y 2020 Proc. SPIE 11567 115672PGoogle Scholar
[18] Xiao G Y, Zhang H, Xie X L, Chang S L, Fang J Y 2021 Proc. SPIE 11763 117631QGoogle Scholar
[19] Thomas G 2021 Opt. Lett. 46 5926Google Scholar
[20] 季家镕 2007 高等光学教程 (北京: 科学出版社) 第188页
Ji J R 2007 Advanced Optics Tutorial (Beijing: Science Press) p188
-
图 1 16通道快照式多光谱FP微腔阵列的制作工艺 (a) 底部分布式布拉格反射器(distributed Bragg reflector, DBR)和空腔层沉积在石英基底上; (b) 通过UV光刻和反应离子刻蚀组合工艺处理空腔层; (c) 顶部DBR沉积在处理过的空腔层上, 并形成具有4×4个不同FP腔厚度的微腔阵列
Figure 1. Fabrication process of a 16-channel snapshot type multispectral Fabry Perot microcavity array: (a) Bottom distributed Bragg reflector (DBR) and cavity layer are deposited on a quartz substrate; (b) cavity layer is processed by a combined process of UV photolithography and reactive ion etching; (c) top DBR is deposited on the treated cavity layer and formed with 4 × 4 microcavity arrays with different FP cavity thicknesses.
图 2 (a) 窄带膜系透射峰位置随FP腔厚度发生改变(∆h表示FP腔厚度的改变量); (b) 峰位改变量∆λ随厚度改变∆h的关系(红色直线为拟合结果)
Figure 2. (a) Transmission peak position of the narrowband film system changes with the thickness of the FP cavity (∆h represents the amount of change in the thickness of the FP cavity); (b) relationship between peak position change ∆λ and thickness change ∆h (Red line represents the fitting result).
图 3 (a) 依次使用A, B, C, D掩膜(以8×8阵列为例)对FP腔进行四步反应离子刻蚀的示意图; (b)—(e) 顺序进行的四步反应离子刻蚀的相对深度(颜色表示刻蚀区域, 数字表示台阶的相对高度)
Figure 3. (a) Using masks A, B, C, and D in sequence (with 8 × 8 array) schematic diagram of four step reactive-ion etching of FP cavity; (b)–(e) the relative depth of four steps of Reactive-ion etching in sequence (Color indicates the etching area, and number indicates the elevation of the steps).
图 6 微腔阵列样品 (a) 实物照片; (b) 光学显微照片(左半部分为正片, 右半部分为负片); (c) 扫描电子显微图像; (d), (e) 原子力显微镜形貌图及局部放大的4×4重复单元的阶梯状三维形貌(横轴和纵轴是空间坐标; 颜色条表示AFM扫描的相对高度)
Figure 6. Microcavity array sample: (a) Physical photos; (b) optical micrographs (positive in the left half and negative in the right half); (c) scanning electron microscopy image of the Fabry Perot microcavity array sample; (d), (e) atomic force microscope morphology and step like three-dimensional morphology of locally enlarged 4×4 repeating units (Horizontal and vertical axes are spatial coordinates; the color bar indicates the relative height of the AFM scan).
图 7 微腔阵列样品(波长范围是520—680 nm)的(a)光谱通道中心波长设计值(虚线)与微区透射谱测量曲线(实线); (b)光谱通道中心波长相对设计值的偏离(以中心波长设计值的1%设置error bar); (c) 单个透射峰特性
Figure 7. (a) Design value of spectral channel center wavelength (dashed line) and measurement curve of micro region transmission spectrum (solid line) of the microcavity array sample (wavelength range 520–680 nm); (b) deviation of the center wavelength of the multispectral channel from the design value (set as error bar at 1% of the center wavelength design value); (c) single transmission peak characteristics.
图 10 (a)—(p) 分别以553, 558, 567, 574, 582, 588, 593, 601, 608, 614, 627, 634, 643, 651, 663和546 nm单色光入射时, 某个4×4重复单元的像素级灰度响应结果
Figure 10. (a)–(p) Pixel level grayscale response results of a 4 × 4 repeating unit when incident with monochromatic light at 553, 558, 567, 574, 582, 588, 593, 601, 608, 614, 627, 634, 643, 651, 663, and 546 nm, respectively.
表 1 沿A方向测得的高差
Table 1. Measured height difference along direction A.
Item Height difference/nm Etching time/s Etching rate/(Å·s–1) 1 2 3 4 5 6 7 8 Average ∆h1 9.1 9.5 9.2 10.3 9.2 8.9 9.7 9.4 9.41 28 3.36 Δh2 107.2 107.1 107.3 107.5 106.0 107.3 107.0 108.6 107.25 300 3.58 Δh3 113.5 113.0 116.2 123.6 112.0 115.0 113.3 119.3 115.74 328 3.53 表 2 沿B方向测得的高差
Table 2. Measured height difference along direction B.
Item Height difference/nm Etching time/s Etching rate/(Å·s–1) 1 2 3 4 5 6 7 8 Average ∆h1 24.7 23.5 25.0 24.3 24.5 24.3 26.0 24.4 24.59 70 3.51 Δh2 55.5 54.1 57.2 58.0 57.0 56.7 56.8 56.5 56.48 150 3.77 Δh3 76.5 76.5 72.0 73.5 72.6 78.3 77.3 78.1 75.60 220 3.44 -
[1] Janssen P J C 1869 C. R. Acad. Sci. 68 93
[2] Fabry C, Pérot A 1897 Ann. Chim. Phys. 12 459
[3] Hagen N, Kudenov M W 2013 Opt. Eng. 52 090901Google Scholar
[4] Williams C, Gordon G S D, Wilkinson T D, Bohndiek S E 2019 ACS Photonics 6 3132Google Scholar
[5] 周奎, 单政, 张倩, 王谢君, 周健, 邓宸伟, 虞益挺 2022 光学学报 42 080000Google Scholar
Zhou K, Shan Z, Zhang Q, Wang X J, Zhou J, Deng C W, Yu Y T 2022 Acta Opt. Sin. 42 080000Google Scholar
[6] Wang S W, Li M, Xia C S, Wang H Q, Chen X S, Lu W 2007 Appl. Phys. B 88 281Google Scholar
[7] 王绪权, 黄松垒, 于月华, 叶捷敏, 邵秀梅, 方家熊 2018 光子学报 47 530001Google Scholar
Wang X Q, Huang S L, Yu Y H, Ye J M, Shao X M, Fang J X 2018 Acta Photonica Sin. 47 530001Google Scholar
[8] Xuan Z Y, Liu Q Q, Cui Z Z, Huang S L, Yang B, Li C L, Wang S W, Lu W 2022 Chin. Opt. Lett. 20 061302Google Scholar
[9] Yin Z Q, Liu Q Q, Guan X Y, Xie M B, Lu W, Wang S W 2023 Opt. Lett. 48 3371Google Scholar
[10] Xuan Z Y, Wang Z, Liu Q Q, Huang S L, Yang B, Yang L Y, Yin Z Q, Xie M B, Li C L, Yu J Y, Wang S W, Lu W 2022 Adv. Opt. Mater. 10 2200284Google Scholar
[11] Liu Q Q, Xuan Z Y, Wang Z, Zhao X C, Yin Z Q, Li C L, Chen G, Wang S W, Lu W 2022 Opt. Lett. 47 2923Google Scholar
[12] Liu Q Q, Li C L, Xie M B, Wang S W, Yang S M, Zuo Y, Zhao J, Xuan Z Y, Zhu Y Y, Li Z F, Wu Y Q, Lu W 2023 ACS Photonics 10 125Google Scholar
[13] Li C L, Liu Q Q, Zhu Y Y, Zhao X C, Yang S M, Li Z F, Wang S W, Shen X C 2023 Nanoscale 15 11466Google Scholar
[14] 肖树林, 胡长虹, 高路尧 2021 中国科技成果 23 26Google Scholar
Xiao S L, Hu C H, Gao L Y 2021 China Achieve. Sci. Technol. 23 26Google Scholar
[15] Kutteruf Mary R, Yetzbacher Michael K, Deprenger Michael J, Novak K M, Miller C A, Kanaev A, Henry D J, Lange D A, VonBerg D L, Rajan S R, Walls T J, Young D L 2014 Proc. SPIE 9076 90760MGoogle Scholar
[16] Geelen B, Blanch C, Gonzalez P, Tack N, Lambrechts A 2015 Proc. SPIE 9374 937414Google Scholar
[17] Zhang H, Cai Y, Chen Z L, Xie X L, Chang S L, Fang J Y 2020 Proc. SPIE 11567 115672PGoogle Scholar
[18] Xiao G Y, Zhang H, Xie X L, Chang S L, Fang J Y 2021 Proc. SPIE 11763 117631QGoogle Scholar
[19] Thomas G 2021 Opt. Lett. 46 5926Google Scholar
[20] 季家镕 2007 高等光学教程 (北京: 科学出版社) 第188页
Ji J R 2007 Advanced Optics Tutorial (Beijing: Science Press) p188
Catalog
Metrics
- Abstract views: 2092
- PDF Downloads: 94