Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical origins of complex interference structures in harmonic emission from molecular ions stretched to large internuclear distances

Li Wei-Yan Liu Na Wang Shang

Citation:

Physical origins of complex interference structures in harmonic emission from molecular ions stretched to large internuclear distances

Li Wei-Yan, Liu Na, Wang Shang
PDF
HTML
Get Citation
  • High-order harmonic generation (HHG) from the molecular ions stretched to large internuclear distances is studied numerically and analytically in this work. We focus on the fine structure of the HHG spectrum related to the contribution of short electron trajectory. In our numerically solving the time-dependent Schrodinger equation (TDSE), we use a trajectory-dependent filtering procedure to separate the short-trajectory contribution from other contributions of long trajectory and multiple returns. Our TDSE results reveal that the short-trajectory HHG spectra of molecular ion with larger internuclear distance show some complex interference structures characterized by some remarkable dips, and that the position of the dip is sensitive to the laser parameters. With a developed model arising from strong-field approximation (SFA), we are able to identify the physical origins of the complex interference structures. In this model considered is the charge-resonance effect which induces the strong coupling between the ground state and the first excited state of the molecular ion at large internuclear distance. In this model, the well-known effect of two-center interference occurs in the form of the canonical momentum instead of the momentum related to the instantaneous velocity of the electron in the general SFA. It is shown that some dips in TDSE results arise from two-center interference of the electronic wave between these two atomic cores of the molecule in the ionization process, while others come from that in the recombination process. These ionization and recombination dips alternately appear in the HHG spectra from the formed complex interference structures. The main differences between the interference effects in the ionization process and the recombination process are twofold. Firstly, in the ionization process, the destructive two-center interference strongly suppresses the forming of the continuum wavepacket, while in the recombination process, the recombination of the rescattering electron with other bound eigenstates with small weights can also contribute to HHG bedsides the recombination of the ground state with the first excited state with large weights. As a result, in TDSE results, the ionization dips are deeper and more remarkable than the recombination ones. Secondly, in the recombination process, the Coulomb acceleration remarkably changes the de Broglie wavelength of the rescattering electron and therefore changes the position of the interference-induced dip. While in the ionization process, the Coulomb potential plays a small role in the interference effect. As a result, the interference dips in the ionization process and the recombination process differ from each other.
      Corresponding author: Li Wei-Yan, liwy157@126.com ; Wang Shang, phywangshang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904072), the Science and Technology Project of Hebei Education Department for Young Scholar, China (Grant Nos. QN2019074, QN2022143), and the S&T Program of Hebei, China (Grant No. A2022205002).
    [1]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [2]

    Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [3]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752Google Scholar

    [4]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [5]

    Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y, Zewail A H 2001 Science 291 458Google Scholar

    [6]

    Baltuska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611Google Scholar

    [7]

    Eckle P, Smolarski M, Schlup F, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [8]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [9]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902Google Scholar

    [10]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414Google Scholar

    [11]

    McFarland B K, Farrell J P, Bucksbaum P H, Gühr M 2008 Science 322 1232Google Scholar

    [12]

    Shafir D, Mairesse Y, Villeneuve D M, Corkum P B, Dudovich N 2009 Nat. Phys. 5 412Google Scholar

    [13]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011 Nat. Phys. 7 822Google Scholar

    [14]

    Lein M, Hay N, Velotta R, Marangos J R, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [15]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470Google Scholar

    [16]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902Google Scholar

    [17]

    Chen Y J, Liu J, Hu Bambi 2009 J. Chem. Phys. 130 044311Google Scholar

    [18]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Yu 2009 Nature 460 972Google Scholar

    [19]

    Wörner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010 Nature 466 604Google Scholar

    [20]

    Salières P, Maquet A, Haessler S, Caillat J, Taïeb R 2012 Rep. Prog. Phys. 75 062401Google Scholar

    [21]

    Lépine M, Ivanov M Yu, Vrakking M J J 2014 Nat. Photon. 8 195Google Scholar

    [22]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O, Dudovich N 2012 Nature 485 343Google Scholar

    [23]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901Google Scholar

    [24]

    Etches A, Madsen L B 2010 J. Phys. B 43 155602Google Scholar

    [25]

    Frumker E, Kajumba N, Bertrand J B, Wörner H J, Hebeisen C T, Hockett P, Spanner M, Patchkovskii S, Paulus G G, Villeneuve D M, Naumov A, Corkum P B 2012 Phys. Rev. Lett. 109 233904Google Scholar

    [26]

    Kraus P M, Rupenyan A, Wörner H J 2012 Phys. Rev. Lett. 109 233903Google Scholar

    [27]

    Kraus P M, Baykusheva D, Wörner H J 2014 Phys. Rev. Lett. 113 023001Google Scholar

    [28]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [29]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511Google Scholar

    [30]

    Becker W, Chen J, Chen S G, Milošević D B 2007 Phys. Rev. A 76 033403Google Scholar

    [31]

    Chen Y J, Zhang B 2012 J. Phys. B 45 215601Google Scholar

    [32]

    Zuo T, Chelkowski S, Bandrauk A D 1993 Phys. Rev. A 48 3837Google Scholar

    [33]

    Ivanov M Yu, Corkum P B 1993 Phys. Rev. A 48 580Google Scholar

    [34]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405Google Scholar

    [35]

    Chen J, Chen S G 2007 Phys. Rev. A 75 041402(RGoogle Scholar

    [36]

    Li W Y, Dong F L, Yu S J, Wang S, Yang S P, Chen Y J 2015 Opt. Express 23 31010Google Scholar

    [37]

    Li W Y, Wang S, Shi Y Z, Yang S P, Chen Y J 2017 J. Phys. B 50 085003Google Scholar

    [38]

    Feit M D, Fleck J A, Jr., Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Milošević D B 2006 Phys. Rev. A 74 063404Google Scholar

    [40]

    Lewenstein M, Salières P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar

    [41]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109Google Scholar

    [42]

    Mulliken R S 1939 J. Chem. Phys. 7 20Google Scholar

    [43]

    Lein M 2005 Phys. Rev. A 72 053816Google Scholar

    [44]

    Chen Y J, Hu Bambi 2010 Phys. Rev. A 81 013411Google Scholar

    [45]

    Cohen Howard D, Fano U 1966 Phys. Rev. 150 30Google Scholar

    [46]

    Zuo T, Bandrauk A D, Corkum P B 1996 Chem. Phys. Lett. 259 313Google Scholar

    [47]

    Yang W F, Sheng Z H, Feng X P, Wu M L, Chen Z J, Song X D 2014 Opt. Express 22 2519Google Scholar

    [48]

    Li Y, Qin M Y, Zhu X S, Zhang Q B, Lan P F, Lu P X 2015 Opt. Express 23 10687Google Scholar

    [49]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L, Trinter F, Jahnke T, Schöffler-Markus S, Dörne R 2020 Science 370 339Google Scholar

    [50]

    Gao F, ChenY J, Xin G G, Liu J, and Fu L B 2017 Phys. Rev. A 96 063414Google Scholar

    [51]

    Ren D X, Wang S, Chen C, Li X K, Yu X T, Zhao X N, Ma P, Wang C C, Luo S Z, Chen Y J, Ding D J 2022 J. Phys. B 55 175101Google Scholar

  • 图 1  $R = 16$的H$_2^ + $的短轨道TDSE谐波谱与模型预测结果, 激光场强度$ I = 5 \times {10^{14}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{W/c}}{{\text{m}}^2} $, 激光波长$\lambda = 1600{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{nm}}$ (a), (c) $\theta = {0^ \circ }$$\theta = {20^ \circ }$${\text{H}}_2^ + $的短轨道TDSE谐波谱; (b), (d) (5)式在$\theta = {0^ \circ }$$\theta = {20^ \circ }$ 的短轨道计算结果, 包括考虑电离干涉和再结合干涉的结果(黑色实线)和仅考虑电离干涉的结果(红色虚线). 红色和蓝色的数字分别表示电离干涉和再结合干涉最小的位置. 短箭头指示TDSE结果中一些干涉最小的位置, 竖直虚线指示(5)式预期的干涉最小的位置

    Figure 1.  Harmonic spectra of H$_2^ + $ with $R = 16$, obtained for short-trajectory TDSE simulations and relevant predictions of Eq. (5), laser parameters used are $I = 5 \times {10^{14}} ~$W/cm2 and $\lambda = 1600$ nm: (a), (c) Short-trajectory TDSE simulations at $\theta = {0^ \circ }$and$\theta = {20^ \circ }$, respectively; (b), (d) relevant predictions of Eq. (5) at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively, with considering the contributions of both ionization and recombination (black solid curves) and considering only the contributions of ionization (red dashed curves). The red and blue numbers indicate minima related to ionization and recombination, respectively. Arrows indicate some minima in TDSE results and use the vertical dashed lines to indicate minima in predictions of Eq. (5).

    图 2  核间距$R = 16$${\text{H}}_2^ + $ 的短轨道TDSE谐波在 $\theta = {0^ \circ }$ 的时频分布以及相应(5)式预期的干涉最小, 包括联系于电离的干涉最小(红色空心圆圈)和联系于再结合的干涉最小(黑色空心圆圈), 激光参数同图1(a)

    Figure 2.  Time-frequency distribution of HHG for ${\text{H}}_2^ + $ with $R = 16$ obtained with short-trajectory TDSE simulations at $\theta = {0^ \circ }$ and the corresponding predictions of Eq. (5) for the interference minima, including minima related to ionization (red hollow circle) and recombination (black hollow circle), respectively. The laser parameters used are as in Fig. 1(a).

    图 3  $R = 16$的H$_2^ + $的短轨道TDSE谐波谱与模型预测结果, 激光场强度$ I = 5 \times {10^{14}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{W/c}}{{\text{m}}^2} $, 激光波长$\lambda = 1800{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{nm}}$(a), (c)$\theta = {0^ \circ }$$\theta = {20^ \circ }$${\text{H}}_2^ + $的短轨道TDSE谐波谱; (b), (d) (5)式在$\theta = {0^ \circ }$$\theta = {20^ \circ }$ 的短轨道计算结果, 包括考虑电离干涉和再结合干涉的结果(黑色实线)和仅考虑电离干涉的结果(红色虚线). 红色和蓝色的数字分别表示电离干涉和再结合干涉的最小位置. 短箭头指示TDSE结果中一些干涉最小的位置, 竖直虚线指示(5)式预期的干涉最小的位置

    Figure 3.  Harmonic spectra of H$_2^ + $ with $R = 16$, obtained for short-trajectory TDSE simulations and relevant predictions of Eq. (5), laser parameters used are $I = 5 \times {10^{14}}$ W/cm2 and $\lambda = 1800$ nm: (a), (c) Short-trajectory TDSE simulations at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively; (b), (d) relevant predictions of Eq. (5) at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively, with considering the contributions of both ionization and recombination (black solid curves) and considering only the contributions of ionization (red dashed curves). The red and blue numbers indicate minima related to ionization and recombination, respectively. Arrows indicate some minima in TDSE results and use the vertical dashed lines to indicate minima in predictions of Eq. (5).

    图 4  $R = 16$的H$_2^ + $的短轨道TDSE谐波谱与模型预测结果, 激光场强度$ I = 5 \times {10^{14}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{W/c}}{{\text{m}}^2} $ , 激光波长$\lambda = 1200{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{nm}}$(a), (c)$\theta = {0^ \circ }$$\theta = {20^ \circ }$${\text{H}}_2^ + $的短轨道TDSE谐波谱; (b), (d) (5)式在$\theta = {0^ \circ }$$\theta = {20^ \circ }$ 的短轨道计算结果, 包括考虑电离干涉和再结合干涉的结果(黑色实线)和仅考虑电离干涉的结果(红色虚线). 红色和蓝色的数字分别表示电离干涉和再结合干涉的最小位置. 短箭头指示TDSE结果中一些干涉最小的位置, 竖直虚线指示(5)式预期的干涉最小的位置

    Figure 4.  Harmonic spectra of H$_2^ + $ with $R = 16$, obtained for short-trajectory TDSE simulations and relevant predictions of Eq. (5), laser parameters used are $I = 5 \times {10^{14}}$W/cm2 and $\lambda = 1200$ nm: (a), (c) Short-trajectory TDSE simulations at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively; (b), (d)relevant predictions of Eq. (5) at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively, with considering the contributions of both ionization and recombination (black solid curves) and considering only the contributions of ionization (red dashed curves). The red and blue numbers indicate minima related to ionization and recombination, respectively. Arrows indicate some minima in TDSE results and use the vertical dashed lines to indicate minima in predictions of Eq. (5).

    图 5  $R = 12$的H$_2^ + $的短轨道TDSE谐波谱与模型预测结果, 激光场强度$ I = 5 \times {10^{14}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{W/c}}{{\text{m}}^2} $, 激光波长$\lambda = 1600{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{nm}}$(a), (c)$\theta = {0^ \circ }$$\theta = {20^ \circ }$${\text{H}}_2^ + $的短轨道TDSE谐波谱; (b), (d) (5)式在$\theta = {0^ \circ }$$\theta = {20^ \circ }$ 的短轨道计算结果, 包括考虑电离干涉和再结合干涉的结果(黑色实线)和仅考虑电离干涉的结果(红色虚线). 红色和蓝色的数字分别表示电离干涉和再结合干涉的最小位置. 短箭头指示TDSE结果中一些干涉最小的位置, 竖直虚线指示(5)式预期的干涉最小的位置

    Figure 5.  Harmonic spectra of H$_2^ + $ with $R = 12$, obtained for short-trajectory TDSE simulations and relevant predictions of Eq. (5), laser parameters used are $I = 5 \times {10^{14}}$W/cm2 and $\lambda = 1600$ nm: (a), (c) Short-trajectory TDSE simulations at $\theta = {0^ \circ }$ and$\theta = {20^ \circ }$, respectively; (b), (d) relevant predictions of Eq. (5) at $\theta = {0^ \circ }$ and $\theta = {20^ \circ }$, respectively, with considering the contributions of both ionization and recombination (black solid curves) and considering only the contributions of ionization (red dashed curves). The red and blue numbers indicate minima related to ionization and recombination, respectively. Arrows indicate some minima in TDSE results and use the vertical dashed lines to indicate minima in predictions of Eq. (5).

    图 6  核间距$R = 16$${\text{H}}_2^ + $ 的短轨道TDSE谐波在 $\theta = {0^ \circ }$ 的时频分布以及相应(5)式预期的干涉最小, 包括联系于电离的干涉最小(红色空心圆圈)和联系于再结合的干涉最小(黑色空心圆圈). 其中, 电离能${I_p} = 0.562\;{\text{a}}{\text{.u}}.$. 激光场强度$ I = 1 \times {10^{14}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{W/c}}{{\text{m}}^2} $, 激光波长$\lambda = 1800{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{nm}}$

    Figure 6.  Time-frequency distribution of HHG for ${\text{H}}_2^ + $ with $R = 16$ obtained with short-trajectory TDSE simulations at $\theta = {0^ \circ }$ and the corresponding predictions of Eq. (5) for the interference minima, including minima related to ionization (red hollow circle) and recombination (black hollow circle), respectively. Ionization energy${I_p} = 0.562\;{\text{a}}{\text{.u}}.$. Laser parameters used are $I = 1 \times {10^{14}}$W/cm2 and $\lambda = 1800$ nm

  • [1]

    Corkum P B, Krausz F 2007 Nat. Phys. 3 381Google Scholar

    [2]

    Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [3]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752Google Scholar

    [4]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [5]

    Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y, Zewail A H 2001 Science 291 458Google Scholar

    [6]

    Baltuska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611Google Scholar

    [7]

    Eckle P, Smolarski M, Schlup F, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [8]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [9]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902Google Scholar

    [10]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414Google Scholar

    [11]

    McFarland B K, Farrell J P, Bucksbaum P H, Gühr M 2008 Science 322 1232Google Scholar

    [12]

    Shafir D, Mairesse Y, Villeneuve D M, Corkum P B, Dudovich N 2009 Nat. Phys. 5 412Google Scholar

    [13]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011 Nat. Phys. 7 822Google Scholar

    [14]

    Lein M, Hay N, Velotta R, Marangos J R, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [15]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470Google Scholar

    [16]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902Google Scholar

    [17]

    Chen Y J, Liu J, Hu Bambi 2009 J. Chem. Phys. 130 044311Google Scholar

    [18]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Yu 2009 Nature 460 972Google Scholar

    [19]

    Wörner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010 Nature 466 604Google Scholar

    [20]

    Salières P, Maquet A, Haessler S, Caillat J, Taïeb R 2012 Rep. Prog. Phys. 75 062401Google Scholar

    [21]

    Lépine M, Ivanov M Yu, Vrakking M J J 2014 Nat. Photon. 8 195Google Scholar

    [22]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Yu, Smirnova O, Dudovich N 2012 Nature 485 343Google Scholar

    [23]

    Zhao J, Lein M 2013 Phys. Rev. Lett. 111 043901Google Scholar

    [24]

    Etches A, Madsen L B 2010 J. Phys. B 43 155602Google Scholar

    [25]

    Frumker E, Kajumba N, Bertrand J B, Wörner H J, Hebeisen C T, Hockett P, Spanner M, Patchkovskii S, Paulus G G, Villeneuve D M, Naumov A, Corkum P B 2012 Phys. Rev. Lett. 109 233904Google Scholar

    [26]

    Kraus P M, Rupenyan A, Wörner H J 2012 Phys. Rev. Lett. 109 233903Google Scholar

    [27]

    Kraus P M, Baykusheva D, Wörner H J 2014 Phys. Rev. Lett. 113 023001Google Scholar

    [28]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [29]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511Google Scholar

    [30]

    Becker W, Chen J, Chen S G, Milošević D B 2007 Phys. Rev. A 76 033403Google Scholar

    [31]

    Chen Y J, Zhang B 2012 J. Phys. B 45 215601Google Scholar

    [32]

    Zuo T, Chelkowski S, Bandrauk A D 1993 Phys. Rev. A 48 3837Google Scholar

    [33]

    Ivanov M Yu, Corkum P B 1993 Phys. Rev. A 48 580Google Scholar

    [34]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405Google Scholar

    [35]

    Chen J, Chen S G 2007 Phys. Rev. A 75 041402(RGoogle Scholar

    [36]

    Li W Y, Dong F L, Yu S J, Wang S, Yang S P, Chen Y J 2015 Opt. Express 23 31010Google Scholar

    [37]

    Li W Y, Wang S, Shi Y Z, Yang S P, Chen Y J 2017 J. Phys. B 50 085003Google Scholar

    [38]

    Feit M D, Fleck J A, Jr., Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Milošević D B 2006 Phys. Rev. A 74 063404Google Scholar

    [40]

    Lewenstein M, Salières P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar

    [41]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109Google Scholar

    [42]

    Mulliken R S 1939 J. Chem. Phys. 7 20Google Scholar

    [43]

    Lein M 2005 Phys. Rev. A 72 053816Google Scholar

    [44]

    Chen Y J, Hu Bambi 2010 Phys. Rev. A 81 013411Google Scholar

    [45]

    Cohen Howard D, Fano U 1966 Phys. Rev. 150 30Google Scholar

    [46]

    Zuo T, Bandrauk A D, Corkum P B 1996 Chem. Phys. Lett. 259 313Google Scholar

    [47]

    Yang W F, Sheng Z H, Feng X P, Wu M L, Chen Z J, Song X D 2014 Opt. Express 22 2519Google Scholar

    [48]

    Li Y, Qin M Y, Zhu X S, Zhang Q B, Lan P F, Lu P X 2015 Opt. Express 23 10687Google Scholar

    [49]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L, Trinter F, Jahnke T, Schöffler-Markus S, Dörne R 2020 Science 370 339Google Scholar

    [50]

    Gao F, ChenY J, Xin G G, Liu J, and Fu L B 2017 Phys. Rev. A 96 063414Google Scholar

    [51]

    Ren D X, Wang S, Chen C, Li X K, Yu X T, Zhao X N, Ma P, Wang C C, Luo S Z, Chen Y J, Ding D J 2022 J. Phys. B 55 175101Google Scholar

  • [1] Yang Yan, Zhang Bin, Ren Zhong-Xue, Bai Guang-Ru, Liu Lu, Zhao Zeng-Xiu. Asymmetry in high-order harmonic generation of polar molecule CO. Acta Physica Sinica, 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [2] Wang Yang, Liu Yu, Wu Cheng-Yin. Generation, manipulation, and application of high-order harmonics in solids. Acta Physica Sinica, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [3] Zhang Meng-Lai, Qin Zhao-Fu, Chen Zhuo. Conditions for surface lattice resonances and enhancement of second harmonic generation based on split-ring resonators. Acta Physica Sinica, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [4] Yuan Chang-Quan, Guo Ying-Chun, Wang Bing-Bing. Interference effect in high order harmonic generation by aligned O2. Acta Physica Sinica, 2021, 70(20): 204206. doi: 10.7498/aps.70.20210433
    [5] Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet. Acta Physica Sinica, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [6] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [7] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] Li Gui-Hua, Xie Hong-Qiang, Yao Jin-Ping, Chu Wei, Cheng Ya, Liu Xiao-Jun, Chen Jing, Xie Xin-Hua. Signature of multi-channel interference in high-order harmonic generation from N2 driven by intense mid-infrared pulses. Acta Physica Sinica, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [9] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] Luo Xiang-Yi, Ben Shuai, Ge Xin-Lei, Wang Qun, Guo Jing, Liu Xue-Shen. High-order harmonics and attosecond pulse generation of a He+ ion by a chirped two-color inhomogeneous laser field. Acta Physica Sinica, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [11] Zhang Qian-Yun, Zeng Jie, Li Ji-Feng, Zhou Ya-Bin, Zhang Xian-Hui, Cao Hai-Dong. Study of prism surface plasmon resonance effect based on dielectric-aided layer. Acta Physica Sinica, 2014, 63(3): 034207. doi: 10.7498/aps.63.034207
    [12] Li Xiao-Gang, Li Fang, He Zhi-Cong. Quantum path interferences of high-order harmonic generation in two-color Gaussian beams. Acta Physica Sinica, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [13] Guo Zhong-Hua, Zhou Xiao-Xin. The influence of molecular ground state wave function on high-order harmonic generation from N2 molecules in intense laser fields. Acta Physica Sinica, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [14] Ge Yu-Cheng. Relation of harmonic radiative energy and laser phase in high-order harmonic generation. Acta Physica Sinica, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [15] Ge Yu-Cheng. Emission properties of high-order harmonic generation. Acta Physica Sinica, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [16] Localized surface plasmon resonance of half-shell gold film. Acta Physica Sinica, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [17] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [18] Mao Hua-Ping, Wang Hong-Yan, Tang Yong-Jian, Zhu Zheng-He, Zheng Sao-Tao. The effects of charge on the potential energy function and energy levels for Cu2n±(n=0,1,2). Acta Physica Sinica, 2004, 53(1): 37-41. doi: 10.7498/aps.53.37
    [19] Wang Yong-Nian, Li Hong-Wei. . Acta Physica Sinica, 2002, 51(4): 857-862. doi: 10.7498/aps.51.857
    [20] SHEN WEN-DA, ZHU SHI-TONG. RESONANT ABSORPTION AND SECOND-HARMONIC GENERATION AT A RIPPLED CRITICAL SURFACE IN THE LASER PLASMA. Acta Physica Sinica, 1981, 30(7): 945-952. doi: 10.7498/aps.30.945
Metrics
  • Abstract views:  4276
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2022
  • Accepted Date:  03 February 2023
  • Available Online:  11 April 2023
  • Published Online:  20 April 2023

/

返回文章
返回