-
The modulation transfer function (MTF) of graded band-gap AlGaAs/GaAs transmission-mode photocathodes is numerically solved from the two-dimensional continuity equations. According to the MTF model, we calculate the theoretical MTF of graded band-gap and uniform band-gap transmission-mode photocathodes, and analyze the effects of Al composition, wavelength of incident photon, and thickness values of AlGaAs and GaAs layer on the resolution. The calculated results show that compared with the uniform band-gap photocathode, the graded band-gap structure can increase the resolution of photocathode evidently. If the spatial frequency f ranges from 100 to 500 lp·mm-1, the increase of resolution is more pronounced. Let f=200 lp·mm-1, the resolution of graded band-gap photocathode generally increases 150%-260%. The resolution improvement of graded band-gap photocathode is attributed to the built-in electric field. While too high built-in electric field will influence the spectral response of long-wavelength photons due to higher Al composition in the AlGaAs/GaAs photocathodes.
-
Keywords:
- graded band-gap /
- built-in electric field /
- resolution /
- modulation transfer function
[1] Turnbull A A, Evans G B 1968 J. Phys. D: Appl. Phys. 1 155
[2] Reng L, Shi F, Guo H, Cui D X, Shi J F, Qian Y S, Wang H G, Chang B K 2013 Acta Phys. Sin. 62 014206 (in Chinese) [任玲, 石峰, 郭晖, 崔东旭, 史继芳, 钱芸生, 王洪刚, 常本康 2013 物理学报 62 014206]
[3] Zhou L W, Li Y, Zhang Z Q, Monastyrski M A, Schelev M Y 2005 Acta Phys. Sin. 54 3591 (in Chinese) [周立伟, 李元, 张智诠, Monastyrski M A, Schelev M Y 2005 物理学报 54 3591]
[4] Estrera J P, Bender E J, Giordana A, Glesener J W, Iosue M, Lin P P, Sinor T W 2000 Proc. SPIE 4128 46
[5] Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803 (in Chinese) [赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803]
[6] Beauvais J, Chautemps J, Groot P D 1986 Adv. Electron. Electron Phys. 64A 267
[7] Sinor T W, Estrera J P, Phillips D L, Rector M K 1995 Proc. SPIE 2551 130
[8] Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese) [陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 物理学报 62 037303]
[9] Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[10] Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese) [蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 物理学报 61 187901]
[11] Zou J J, Chang B K, Yang Z, Zhang Y J, Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese) [邹继军, 常本康, 杨智, 张益军, 乔建良 2009 物理学报 58 5842]
[12] Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese) [戚巽骏, 林斌, 曹向群, 陈钰清 2008 物理学报 57 2854]
[13] Yan J L, Zhao Y N, Zhu C C 1999 Semicond. Optoelectron. 20 252 (in Chinese) [闫金良, 赵银女, 朱长纯 1999 半导体光电 20 252]
[14] Ren L, Chang B K 2011 Chin. Phys. B 20 087308
[15] Levinshtein M, Rumyantsev R, Shur M 1999 Handbook Series on Semiconductor Parameters (Vol.2) (London: World Scientific) pp1-36
[16] Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622
[17] Timmons M L, Hutchby J A, Ahrenkiel R K, Dunlavy D J 1988 GaAs and Related Compounds (Ser. 96) (Bristol and Philadelphia: Institute of Physics) pp289-294
[18] Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754
-
[1] Turnbull A A, Evans G B 1968 J. Phys. D: Appl. Phys. 1 155
[2] Reng L, Shi F, Guo H, Cui D X, Shi J F, Qian Y S, Wang H G, Chang B K 2013 Acta Phys. Sin. 62 014206 (in Chinese) [任玲, 石峰, 郭晖, 崔东旭, 史继芳, 钱芸生, 王洪刚, 常本康 2013 物理学报 62 014206]
[3] Zhou L W, Li Y, Zhang Z Q, Monastyrski M A, Schelev M Y 2005 Acta Phys. Sin. 54 3591 (in Chinese) [周立伟, 李元, 张智诠, Monastyrski M A, Schelev M Y 2005 物理学报 54 3591]
[4] Estrera J P, Bender E J, Giordana A, Glesener J W, Iosue M, Lin P P, Sinor T W 2000 Proc. SPIE 4128 46
[5] Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803 (in Chinese) [赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803]
[6] Beauvais J, Chautemps J, Groot P D 1986 Adv. Electron. Electron Phys. 64A 267
[7] Sinor T W, Estrera J P, Phillips D L, Rector M K 1995 Proc. SPIE 2551 130
[8] Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese) [陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 物理学报 62 037303]
[9] Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323
[10] Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese) [蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 物理学报 61 187901]
[11] Zou J J, Chang B K, Yang Z, Zhang Y J, Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese) [邹继军, 常本康, 杨智, 张益军, 乔建良 2009 物理学报 58 5842]
[12] Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese) [戚巽骏, 林斌, 曹向群, 陈钰清 2008 物理学报 57 2854]
[13] Yan J L, Zhao Y N, Zhu C C 1999 Semicond. Optoelectron. 20 252 (in Chinese) [闫金良, 赵银女, 朱长纯 1999 半导体光电 20 252]
[14] Ren L, Chang B K 2011 Chin. Phys. B 20 087308
[15] Levinshtein M, Rumyantsev R, Shur M 1999 Handbook Series on Semiconductor Parameters (Vol.2) (London: World Scientific) pp1-36
[16] Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622
[17] Timmons M L, Hutchby J A, Ahrenkiel R K, Dunlavy D J 1988 GaAs and Related Compounds (Ser. 96) (Bristol and Philadelphia: Institute of Physics) pp289-294
[18] Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754
Catalog
Metrics
- Abstract views: 6251
- PDF Downloads: 467
- Cited By: 0