-
The safe operation of power equipment largely depends on the overvoltage protection level of the arrester. The ZnO varistors are widely used as the core components of the arresters in power systems because of the excellent nonlinear volt-ampere characteristics. In order to study the electrical properties of ZnO varistors under different external electric fields from the microstructure, the method of first-principles based on density functional theory (DFT) is used, and structure of ZnO/β-Bi2O3 interface containing zinc interstitial (Zni) and oxygen vacancy (Vo) defects is built. The results show that the Vo defect migrates after full relaxation. The Zni shifts to the interface under an external electric field. The interface energy increases rapidly after the electric field intensity has exceeded 0.1 V/Å, which means that the interaction force between the interfaces becomes larger, the distance between ZnO and β-Bi2O3 layers decreases, and the conductivity increases rapidly. The differential charge density, work function and Bader charge analysis method are used to calculate the barrier height at the interface, which proves that the built-in electric field is an important cause ingredient responsible for the non-linear volt-ampere characteristics of ZnO varistors. The effects of atomic orbital energy level, trap energy level and energy gap on the macroscopic conductivity of ZnO varistors are analyzed by using the method of density of states analysis. In this work are analyzed the different electrical parameters of the ZnO/β-Bi2O3 interface with aggregation defects by adjusting the intensity of the external electric field, and a new idea is provided for learning the electrical characteristics of ZnO varistors.
-
Keywords:
- ZnO varistor /
- defects /
- micro characteristics /
- built-in electric field
[1] 李鹏, 李金忠, 崔博源, 董勤晓, 时卫东, 赵志刚 2016 高电压技术 42 1068Google Scholar
Li P, Li J Z, Cui B Y, Dong Q X, Shi W D, Zhao Z G 2016 High Voltage Eng. 42 1068Google Scholar
[2] 韩先才, 孙昕, 陈海波, 邱宁, 吕铎, 王宁华, 王晓宁, 张甲雷 2020 中国电机工程学报 40 4371Google Scholar
Han X C, Sun X, Chen H B, Qiu N, Lv D, Wang N H, Zhang J L 2020 Chin. Soc. Elec. Eng. 40 4371Google Scholar
[3] 陈家宏, 赵淳, 谷山强, 向念文, 王宇, 雷梦飞 2016 高电压技术 42 3361Google Scholar
Chen J H, Zhao C, Gu S Q, Xiang N W, Wang Y, Lei M F 2016 High Voltage Eng. 42 3361Google Scholar
[4] 何金良, 刘俊, 胡军, 龙望成 2011 高电压技术 37 634Google Scholar
He J L, Liu J, Hu J, Long W C 2011 High Voltage Eng. 37 634Google Scholar
[5] Finnis M W 1996 Phys. Condens. Matter 8 5811Google Scholar
[6] 刘建科, 陈永佳, 崔永宏, 韩晨, 张诚, 范亚红, 梁楚轩 2016 硅酸盐学报 44 1736Google Scholar
Liu J K, Chen Y J, Cui Y H, Han C, Zhang C, Fan Y H, Liang C X 2016 Chin Ceram Soc. 44 1736Google Scholar
[7] Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983Google Scholar
[8] Huang W G, Cai J, Hu J, Zhu J F, Yang F, Bao X 2021 Chin. J. Catal. 42 971Google Scholar
[9] 孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377Google Scholar
Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377Google Scholar
[10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar
Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar
[11] Skidan B S, Maung Maung M’int 2007 Glass Ceram. 64 31Google Scholar
[12] 孟鹏飞, 刘政, 曹伟, 杜传报, 周凯, 胡军 2021 中国电机工程学报 41 1588Google Scholar
Meng P F, Liu Z, Cao W, Du C B, Zhou K, Hu j 2021 Chin. Soc. Elec. Eng. 41 1588Google Scholar
[13] 赵学童, 李建英, 李欢, 李盛涛 2012 物理学报 61 147Google Scholar
Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 147Google Scholar
[14] Onreabroy W, Sirikulrat N, Brown A P, Hammond C, Milne S J 2006 Solid State Ionics 177 411Google Scholar
[15] 徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2001 中国科学(A辑) 04 358Google Scholar
Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2001 Sci. China, Ser. A Math. 04 358Google Scholar
[16] 徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2002 红外与毫米波学报 S1 91
Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2002 J. Infrared Millimeter Waves S1 91 (in Chinese)
[17] 李亚莎, 黄太焕, 谢云龙, 徐程, 刘国成 2019 原子与分子物理学报 36 1003Google Scholar
Li Y S, Huang T H, Xu C, Liu G C 2019 J. At. Mol. Phys. 36 1003Google Scholar
[18] 成鹏飞, 李盛涛, 李建英 2010 物理学报 59 560Google Scholar
Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560Google Scholar
[19] Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y, Zuo X 2019 Appl. Surf. Sci. 483 231Google Scholar
[20] 马昌敏, 刘廷禹, 常秋香, 罗国胤 2016 高等学校化学学报 37 932Google Scholar
Ma C M, Liu T Y, Chang Q X, Luo G Y 2016 Chem. J. Chin. Univ. 37 932Google Scholar
[21] Eda K 1982 Materials Research Society Symposia Proceedings, Grain Boundaries in Semiconductors 05 381
[22] 张宁 2018 硕士学位论文 (贵州: 贵州大学)
Zhang N 2018 M. S. Thesis (Guizhou: Guizhou University) (in Chinese)
[23] Slavko Bernik, Cheng L H, Matejka Podlogar, Li G R 2018 Ceramics-Silikáty 62 8Google Scholar
[24] Gupta T K, Carlson W G 1982 Appl. Phys. 53 7401Google Scholar
[25] 卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar
Lu T, Chen F W 2012 Acta Phys. -Chem. Sin. 28 1Google Scholar
[26] 王倩, 屠幼萍, 丁立健, 琚泽立 2011 中国科学: 技术科学 41 1128Google Scholar
Wang Q, Tu Y P, Ding L J, Ju Z L 2011 Sci. Sin. (Technologica) 41 1128Google Scholar
[27] Cheng C L, He J L, Hu J 2012 Appl. Phys. Lett. 101 173508Google Scholar
[28] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar
Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar
[29] 成鹏飞, 李盛涛, 焦兴六 2006 物理学报 55 4253Google Scholar
Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253Google Scholar
[30] Kang J, Wu F M, Li J B 2012 J. Phys. Condens. Matter 24 165301Google Scholar
[31] Francis Opoku, Penny Poomani Govender 2019 Mater. Chem. Phys. 224 107Google Scholar
-
表 1 界面结构晶格失配度
Table 1. Interfacial structure lattice mismatch.
U/Å V/Å ZnO(002) 5.628 16.246 Bi2O3(210) 5.630 17.307 晶格失配度/% 0.018 3.160 表 2 不同电场下Bader电荷分析
Table 2. Bader charge analysis with different electric fields.
Layer Species Electric field/(V·Å–1)· Total/e Charge/e ZnO Zn 0 339.845 32.155 0.10 340.959 31.041 0.25 340.805 31.195 O 0 211.328 –31.328 0.10 209.399 –29.399 0.25 210.394 –30.394 β–Bi2O3 Bi 0 158.342 21.658 0.10 160.337 19.663 0.25 159.098 20.902 O 0 136.486 –22.486 0.10 135.304 –21.304 0.25 135.703 –21.703 -
[1] 李鹏, 李金忠, 崔博源, 董勤晓, 时卫东, 赵志刚 2016 高电压技术 42 1068Google Scholar
Li P, Li J Z, Cui B Y, Dong Q X, Shi W D, Zhao Z G 2016 High Voltage Eng. 42 1068Google Scholar
[2] 韩先才, 孙昕, 陈海波, 邱宁, 吕铎, 王宁华, 王晓宁, 张甲雷 2020 中国电机工程学报 40 4371Google Scholar
Han X C, Sun X, Chen H B, Qiu N, Lv D, Wang N H, Zhang J L 2020 Chin. Soc. Elec. Eng. 40 4371Google Scholar
[3] 陈家宏, 赵淳, 谷山强, 向念文, 王宇, 雷梦飞 2016 高电压技术 42 3361Google Scholar
Chen J H, Zhao C, Gu S Q, Xiang N W, Wang Y, Lei M F 2016 High Voltage Eng. 42 3361Google Scholar
[4] 何金良, 刘俊, 胡军, 龙望成 2011 高电压技术 37 634Google Scholar
He J L, Liu J, Hu J, Long W C 2011 High Voltage Eng. 37 634Google Scholar
[5] Finnis M W 1996 Phys. Condens. Matter 8 5811Google Scholar
[6] 刘建科, 陈永佳, 崔永宏, 韩晨, 张诚, 范亚红, 梁楚轩 2016 硅酸盐学报 44 1736Google Scholar
Liu J K, Chen Y J, Cui Y H, Han C, Zhang C, Fan Y H, Liang C X 2016 Chin Ceram Soc. 44 1736Google Scholar
[7] Wang F G, Lv M S, Pang Z Y, Yang T L, Dai Y, Han S H 2008 Appl. Surf. Sci. 254 6983Google Scholar
[8] Huang W G, Cai J, Hu J, Zhu J F, Yang F, Bao X 2021 Chin. J. Catal. 42 971Google Scholar
[9] 孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377Google Scholar
Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377Google Scholar
[10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎 2019 物理学报 68 246301Google Scholar
Huang B Q, Zhou T G, Wu D X, Zhang Z F, Li B K 2019 Acta Phys. Sin. 68 246301Google Scholar
[11] Skidan B S, Maung Maung M’int 2007 Glass Ceram. 64 31Google Scholar
[12] 孟鹏飞, 刘政, 曹伟, 杜传报, 周凯, 胡军 2021 中国电机工程学报 41 1588Google Scholar
Meng P F, Liu Z, Cao W, Du C B, Zhou K, Hu j 2021 Chin. Soc. Elec. Eng. 41 1588Google Scholar
[13] 赵学童, 李建英, 李欢, 李盛涛 2012 物理学报 61 147Google Scholar
Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 147Google Scholar
[14] Onreabroy W, Sirikulrat N, Brown A P, Hammond C, Milne S J 2006 Solid State Ionics 177 411Google Scholar
[15] 徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2001 中国科学(A辑) 04 358Google Scholar
Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2001 Sci. China, Ser. A Math. 04 358Google Scholar
[16] 徐彭寿, 孙玉明, 施朝淑, 徐法强, 潘海斌 2002 红外与毫米波学报 S1 91
Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B 2002 J. Infrared Millimeter Waves S1 91 (in Chinese)
[17] 李亚莎, 黄太焕, 谢云龙, 徐程, 刘国成 2019 原子与分子物理学报 36 1003Google Scholar
Li Y S, Huang T H, Xu C, Liu G C 2019 J. At. Mol. Phys. 36 1003Google Scholar
[18] 成鹏飞, 李盛涛, 李建英 2010 物理学报 59 560Google Scholar
Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560Google Scholar
[19] Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y, Zuo X 2019 Appl. Surf. Sci. 483 231Google Scholar
[20] 马昌敏, 刘廷禹, 常秋香, 罗国胤 2016 高等学校化学学报 37 932Google Scholar
Ma C M, Liu T Y, Chang Q X, Luo G Y 2016 Chem. J. Chin. Univ. 37 932Google Scholar
[21] Eda K 1982 Materials Research Society Symposia Proceedings, Grain Boundaries in Semiconductors 05 381
[22] 张宁 2018 硕士学位论文 (贵州: 贵州大学)
Zhang N 2018 M. S. Thesis (Guizhou: Guizhou University) (in Chinese)
[23] Slavko Bernik, Cheng L H, Matejka Podlogar, Li G R 2018 Ceramics-Silikáty 62 8Google Scholar
[24] Gupta T K, Carlson W G 1982 Appl. Phys. 53 7401Google Scholar
[25] 卢天, 陈飞武 2012 物理化学学报 28 1Google Scholar
Lu T, Chen F W 2012 Acta Phys. -Chem. Sin. 28 1Google Scholar
[26] 王倩, 屠幼萍, 丁立健, 琚泽立 2011 中国科学: 技术科学 41 1128Google Scholar
Wang Q, Tu Y P, Ding L J, Ju Z L 2011 Sci. Sin. (Technologica) 41 1128Google Scholar
[27] Cheng C L, He J L, Hu J 2012 Appl. Phys. Lett. 101 173508Google Scholar
[28] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar
Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar
[29] 成鹏飞, 李盛涛, 焦兴六 2006 物理学报 55 4253Google Scholar
Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253Google Scholar
[30] Kang J, Wu F M, Li J B 2012 J. Phys. Condens. Matter 24 165301Google Scholar
[31] Francis Opoku, Penny Poomani Govender 2019 Mater. Chem. Phys. 224 107Google Scholar
Catalog
Metrics
- Abstract views: 4982
- PDF Downloads: 78
- Cited By: 0