Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron transport properties of carbon nanotubes with radial compression deformation

Lin Yi-Ni Ma Li Yang Quan Geng Song-Chao Ye Mao-Sheng Chen Tao Sun Li-Ning

Citation:

Electron transport properties of carbon nanotubes with radial compression deformation

Lin Yi-Ni, Ma Li, Yang Quan, Geng Song-Chao, Ye Mao-Sheng, Chen Tao, Sun Li-Ning
PDF
HTML
Get Citation
  • In this paper, molecular dynamics simulation method is used to investigate the contacting configuration of carbon nanotubes with open ends and metal, thereby obtaining the law of radial compression deformation of carbon nanotubes. The obtained results show that after horizontally contacting the metal surface, the radial compression deformation is affected by the contact length, the diameter of the tube, the type of metal and the number of layers. Based on the first principles combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties of carbon nanotubes with different diameters, chiralities, lamellar deformations and radial deformations are systematically studied. The obtained results show that the current of metallic single-walled carbon nanotubes presents linear change in a bias voltage range between –2 V and 2 V, and the current-voltage curve is symmetrical about the origin. The magnitude of the current is only related to the bias voltage, but not to the diameter; when the carbon nanotubes are deformed by radial compression, the current growth trend is downward and even plateau effect may appear under a larger bias voltage. The current flowing in the semiconducting single-walled carbon nanotubes decreases with the increase of radial compression deformation, and the current-voltage curve gradually transforms from semiconductor characteristics into metallic characteristics. The trend of the current-voltage curve of double-walled carbon nanotubes is consistent with that of metallic single-walled carbon nanotubes. However, the non-linear variation amplitude of the current-voltage curve of double-walled carbon nanotubes is less affected by the radial compression deformation. Owing to the increase of walls of nanotubes, the current of double-walled carbon nanotubes is twice as high as that of single-walled carbon nanotubes under the same bias voltage. The electrons can produce transitions through rapid vibration between adjacent tubes, in view of the fact that interlayer coupling characteristics of three-walled carbon nanotubes reduce the degeneracy of the energy level and larger system increases the density of states near the Fermi level, resulting in large oscillations and asymmetry about the origin of the current-voltage curve.
      Corresponding author: Ma Li, malian@shu.edu.cn ; Yang Quan, Aidi168@shu.edu.cn ; Chen Tao, chent@suda.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1309200) and the National Natural Science Foundation of China (Grant No. 61573238)
    [1]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [2]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101

    Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101

    [5]

    Mishra K B, Ashok B 2018 Mater. Res. Express 5 075023Google Scholar

    [6]

    Iijima S 1991 Nature 354 56Google Scholar

    [7]

    Jia J, Shi D, Feng X, Chen G 2014 Carbon 76 54Google Scholar

    [8]

    Deng W, Li Y, Chen Y, Zhou W 2014 Micro Nano Lett. 9 626Google Scholar

    [9]

    Xia C J, Zhang B Q, Yang M, Wang C L, Yang A Y 2016 Chin. Phys. Lett. 33 047101Google Scholar

    [10]

    Fu W Y, Xu Z, Bai X D, Gu C Z, Wang E 2009 Nano Lett. 9 921Google Scholar

    [11]

    Brady G J, Way A J, Safron N S, Evensen H T, Gopalan P, Arnold M S 2016 Sci. Adv. 2 9

    [12]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [13]

    Ma K L, Yan X H, Guo Y D, Xiao Y 2011 Eur. Phys. J. B 83 487Google Scholar

    [14]

    An Y P, Sun Y Q, Jiao J T, Zhang M J, Wang K, Chen X C, Wu D P, Wang T X, Fu Z M, Jiao Z Y 2017 Org. Electron. 50 43Google Scholar

    [15]

    Berdiyorov G R, Hamoudi H 2020 ACS Omega 5 189Google Scholar

    [16]

    Yang Q, Ma L, Xiao S G, Zhang D X, Djoulde A, Ye M S, Lin Y N, Geng S C, Li X, Chen T, Sun L N 2021 Nanomater. 11 1290Google Scholar

    [17]

    Wen B, Cao M S, Hou Z L, Song W L, Zhang L, Lu M M, Jin H B, Fang X Y, Wang W Z, Yuan J 2013 Carbon 65 124Google Scholar

    [18]

    Berdiyorov G R, Eshonqulov G, Hamoudi H 2020 Comput. Mater. Sci. 183 109809Google Scholar

    [19]

    Algharagholy L A 2019 J. Electron. Mater. 48 2301Google Scholar

    [20]

    Teichert F, Wagner C, Croy A, Schuster J 2018 J. Phys. Commun. 2 115023Google Scholar

    [21]

    Ohnishi M, Suzuki K, Miura H 2016 Nano Res. 9 1267Google Scholar

    [22]

    Srivastava S, Mishra B K 2018 J. Nanopart. Res. 20 295Google Scholar

    [23]

    Espinosa-Torres N D, Guillén-López A, Martínez-Juárez J, Hernández de la Luz J Á D, Rodríguez-Victoria Á P, Muñiz J 2019 Int. J. Quantum Chem. 119 2

    [24]

    Buonocore F 2010 Mol. Simul. 36 729Google Scholar

    [25]

    刘红, 印海建, 夏树宁 2009 物理学报 58 8489Google Scholar

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489Google Scholar

    [26]

    Yang L, Han J 2000 Phys. Rev. Lett. 85 154Google Scholar

    [27]

    赵起迪, 张振华 2010 物理学报 59 8098Google Scholar

    Zhao Q D, Zhang Z H 2010 Acta Phys. Sin. 59 8098Google Scholar

    [28]

    Patel A M, Joshi A Y 2016 Procedia Technol. 23 122Google Scholar

    [29]

    Di Carlo A, Gheorghe M, Lugli P, Sternberg M, Seifert G, Frauenheim T 2002 Phys. B 314 86Google Scholar

    [30]

    Pecchia A, Di Carlo 2004 Rep. Prog. Phys. 67 1497Google Scholar

    [31]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • 图 1  碳纳米管电子输运性质计算模型

    Figure 1.  Calculation model for the electron transport properties of CNT.

    图 2  多壁碳纳米管及其分子动力学模型 碳纳米管和AFM (a)接触前和 (b)接触后的SEM图像; 原子模型的(c)侧视图和(d)主视图; 径向压缩形变后原子模型的(e)侧视图和(f)主视图

    Figure 2.  Picked CNT and its molecular dynamic model: SEM images of CNT and AFM (a) before contact, (b) after contact; (c) side view and (d) front view of model; after collapse (e) side view and (f) front view of model.

    图 3  碳纳米管与金属表面接触模型. 接触长度为 (a) 11.095 Å, (b) 23.422 Å, (c) 48.078 Å的扶手椅型碳纳米管(6, 6)与金; 扶手椅型碳纳米管(11, 11)与(d)金、(e)铝、(f)铂; (g)双壁碳纳米管与铂; (h)三壁碳纳米管与铂

    Figure 3.  Contact behavior of CNT on metal. Armchir CNT(6, 6) on gold with contact length of (a) 11.095 Å, (b) 23.422 Å, (c) 48.078 Å. Armchir CNT(11, 11) contact behavior on (d) gold, (e) aluminium, (f) platinum. (g) DWCNT contact behavior on platinum. (h) MWCNT contact behavior on platinum.

    图 4  碳纳米管径向压缩形变后原子模型主视图接触长度为(a) 11.095 Å, (b) 23.422 Å, (c) 48.078 Å的扶手椅型碳纳米管(6, 6)与金; 扶手椅型碳纳米管(11, 11)与(d)金、(e)铝、(f)铂; (g)双壁碳纳米管与铂; (h)三壁碳纳米管与铂

    Figure 4.  Front view after collapse of CNT. Armchir CNT(6, 6) on gold with contact length of (a) 11.095 Å, (b) 23.422 Å, (c) 48.078 Å. Armchir CNT (11, 11) contact behavior on (d) gold, (e) aluminium, (f) platinum. (g) DWCNT contact behavior on platinum. (h) MWCNT contact behavior on platinum.

    图 5  扶手椅型碳纳米管在$ {\varepsilon _r} $为0, 0.10和0.15下的电流-电压(I-V)曲线 (a) (6, 6); (b) (11, 11)

    Figure 5.  Current-voltage (I-V) curve of armchair CNT with the radial deformation of 0, 0.10 and 0.15: (a) (6, 6), (b) (11, 11)

    图 6  扶手椅型碳纳米管(6, 6)在0, 0.5, 1.0, 1.5及2.0 V偏压下的透射谱 (a)${\varepsilon _r}=0 $; (b) ${\varepsilon _r}=0.10 $; (c)${\varepsilon _r}=0.15 $

    Figure 6.  Transmission spectrum of Armchair CNT (6, 6) under the bias voltage of 0, 0.5, 1.0, 1.5 and 2.0 V with different radial deformation: (a)${\varepsilon _r}=0 $; (b)${\varepsilon _r}=0.10 $; (c)${\varepsilon _r}=0.15 $.

    图 7  ${\varepsilon _r}=0 $时扶手椅型碳纳米管(11, 11)在0, 0.5, 1.0, 1.5及2.0 V偏压下的透射谱

    Figure 7.  Transmission spectrum of Armchair CNT (6, 6) with the radial deformation of 0 under the bias voltage of 0, 0.5, 1.0, 1.5 and 2.0 V.

    图 8  锯齿型碳纳米管(11, 0)在${\varepsilon _r}$为0, 0.1和0.15下的电流-电压(I-V)曲线

    Figure 8.  Current-voltage (I-V) curve of Zigzag CNT (11, 0) with the radial deformation of 0, 0.1 and 0.15.

    图 9  锯齿型碳纳米管(11, 0)在0, 0.2, 0.5, 1及1.5 V偏压下的透射谱 (a)${\varepsilon _r}=0 $; (b)${\varepsilon _r}= 0.1$; (c)${\varepsilon _r}=0.15 $

    Figure 9.  Transmission spectrum of Zigzag CNT (11, 0) under the bias voltage of 0, 0.2, 0.5, 1 and 1.5 V with different radial deformation: (a)${\varepsilon _r}=0 $; (b)${\varepsilon _r}= 0.1$; (c)${\varepsilon _r}=0.15 $.

    图 10  碳纳米管在${\varepsilon _r}$为0, 0.1和0.15下的电流-电压曲线 (a)双壁; (b)三壁

    Figure 10.  Current-voltage curve of CNT with the radial deformation of 0, 0.1, 0.15: (a) DWCNT; (b) MWCNT.

    图 11  ${\varepsilon _r}=0 $时碳纳米管的透射谱 (a)双壁碳纳米管在0, 0.5, 1.0, 1.5及2.0 V偏压下的透射谱; (b)三壁碳纳米管在–1.5, –0.5, 0, 0.5及1.5 V偏压下的透射谱

    Figure 11.  Transmission spectrum of CNT with the radial deformation of ${\varepsilon _r}=0 $: (a) DWCNT under the bias voltage of 0, 0.5, 1.0, 1.5 and 2.0 V; (b) MWCNT under the bias voltage of –1.5, –0.5, 0, 0.5 and 1.5 V.

    表 1  DFTB的计算方法及参数设置

    Table 1.  Scheme and parameter setting up in calculations with DFTB.

    电子态描述及
    求解方法
    计算方法参数设置
    结构优化算法Smart精确计算法
    精度控制能量0.02 kcal/mol
    力0.1 kcal/(mol·Å)
    应力0.05 GPa
    位移0.001 Å
    最大步数500
    Slater-Koster参数CHNO
    哈密顿量
    对角化
    Divide and conquer
    本征求解法
    自洽场计算自洽电荷(SCC)收敛阈值1 × 10–8 eV
    最大循环次数500
    Broyden电荷混合最大混合幅度0.05
    布里渊区
    K点取样
    (电子输运)
    均匀分布0.02/Å
    泊松求解边界区域缓冲长度7.5 Å
    泊松网格最大
    网格间距
    0.5 Å
    电极区域边界条件Dirichlet
    非电极区域边界条件Neumann
    电极区域缓冲长度0.3 Å
    DownLoad: CSV

    表 2  碳纳米管与金属界面接触的分子动力学模拟

    Table 2.  Molecular dynamic of different CNT on different metal.

    碳纳米管类型管长/Å金属
    类型
    初始
    直径/Å
    最终
    直径/Å
    径向压缩
    形变量
    范德瓦耳斯能
    差/(kcal·mol–1)
    结合能
    /(kcal·mol–1)
    (6, 6)11.0958.147.1470.1220121.3–418.13
    23.4227.2660.1074261.97–743.75
    48.0787.3360.0988490.28–1453.96
    (11, 11)23.41014.9211.9600.1984347.65–1172.86
    12.5580.1583250.96–1094.97
    11.1990.2494495.91–1307.86
    (6, 6) @ (11, 11)23.40014.9213.4770.0967427.66–1769.67
    (2, 2) @ (6, 6) @ (11, 11)23.45614.9213.8500.0717428.89–1867.47
    DownLoad: CSV
  • [1]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [2]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101

    Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101

    [5]

    Mishra K B, Ashok B 2018 Mater. Res. Express 5 075023Google Scholar

    [6]

    Iijima S 1991 Nature 354 56Google Scholar

    [7]

    Jia J, Shi D, Feng X, Chen G 2014 Carbon 76 54Google Scholar

    [8]

    Deng W, Li Y, Chen Y, Zhou W 2014 Micro Nano Lett. 9 626Google Scholar

    [9]

    Xia C J, Zhang B Q, Yang M, Wang C L, Yang A Y 2016 Chin. Phys. Lett. 33 047101Google Scholar

    [10]

    Fu W Y, Xu Z, Bai X D, Gu C Z, Wang E 2009 Nano Lett. 9 921Google Scholar

    [11]

    Brady G J, Way A J, Safron N S, Evensen H T, Gopalan P, Arnold M S 2016 Sci. Adv. 2 9

    [12]

    Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120Google Scholar

    [13]

    Ma K L, Yan X H, Guo Y D, Xiao Y 2011 Eur. Phys. J. B 83 487Google Scholar

    [14]

    An Y P, Sun Y Q, Jiao J T, Zhang M J, Wang K, Chen X C, Wu D P, Wang T X, Fu Z M, Jiao Z Y 2017 Org. Electron. 50 43Google Scholar

    [15]

    Berdiyorov G R, Hamoudi H 2020 ACS Omega 5 189Google Scholar

    [16]

    Yang Q, Ma L, Xiao S G, Zhang D X, Djoulde A, Ye M S, Lin Y N, Geng S C, Li X, Chen T, Sun L N 2021 Nanomater. 11 1290Google Scholar

    [17]

    Wen B, Cao M S, Hou Z L, Song W L, Zhang L, Lu M M, Jin H B, Fang X Y, Wang W Z, Yuan J 2013 Carbon 65 124Google Scholar

    [18]

    Berdiyorov G R, Eshonqulov G, Hamoudi H 2020 Comput. Mater. Sci. 183 109809Google Scholar

    [19]

    Algharagholy L A 2019 J. Electron. Mater. 48 2301Google Scholar

    [20]

    Teichert F, Wagner C, Croy A, Schuster J 2018 J. Phys. Commun. 2 115023Google Scholar

    [21]

    Ohnishi M, Suzuki K, Miura H 2016 Nano Res. 9 1267Google Scholar

    [22]

    Srivastava S, Mishra B K 2018 J. Nanopart. Res. 20 295Google Scholar

    [23]

    Espinosa-Torres N D, Guillén-López A, Martínez-Juárez J, Hernández de la Luz J Á D, Rodríguez-Victoria Á P, Muñiz J 2019 Int. J. Quantum Chem. 119 2

    [24]

    Buonocore F 2010 Mol. Simul. 36 729Google Scholar

    [25]

    刘红, 印海建, 夏树宁 2009 物理学报 58 8489Google Scholar

    Liu H, Yin H J, Xia S N 2009 Acta Phys. Sin. 58 8489Google Scholar

    [26]

    Yang L, Han J 2000 Phys. Rev. Lett. 85 154Google Scholar

    [27]

    赵起迪, 张振华 2010 物理学报 59 8098Google Scholar

    Zhao Q D, Zhang Z H 2010 Acta Phys. Sin. 59 8098Google Scholar

    [28]

    Patel A M, Joshi A Y 2016 Procedia Technol. 23 122Google Scholar

    [29]

    Di Carlo A, Gheorghe M, Lugli P, Sternberg M, Seifert G, Frauenheim T 2002 Phys. B 314 86Google Scholar

    [30]

    Pecchia A, Di Carlo 2004 Rep. Prog. Phys. 67 1497Google Scholar

    [31]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • [1] Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211370
    [2] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [3] Zhang Yan-Ru, Zhang Lin, Ren Jun-Feng, Yuan Xiao-Bo, Hu Gui-Chao. Magnetic coupling properties of Gd-doped ZnO nanowires studied by first-principles calculations. Acta Physica Sinica, 2015, 64(17): 178103. doi: 10.7498/aps.64.178103
    [4] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [5] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [6] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [7] Xu Kui, Wang Qing-Song, Tan Bin, Chen Ming-Xuan, Miao Ling, Jiang Jian-Jun. Molecular dynamic of selectivity and permeation based on deformed carbon nanotube. Acta Physica Sinica, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [8] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [9] Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [10] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [11] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [12] Wang Liu-Ding, Chen Guo-Dong, Zhang Jiao-Qiang, Yang Min, Wang Yi-Jun, An Bo. First-principles study on field emission properties of carbon nanocone. Acta Physica Sinica, 2009, 58(11): 7852-7856. doi: 10.7498/aps.58.7852
    [13] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [14] Chen Guo-Dong, Wang Liu-Ding, An Bo, Yang Min. First principles study of electron field emission from the system of BN nano tuber capped and doped with carbon atom. Acta Physica Sinica, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [15] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] Liu Hong, Yin Hai-Jian, Xia Shu-Ning. Electrical properties of the deformed carbon nanotube field-effect transistors. Acta Physica Sinica, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
    [17] Yuan Jian-Hui, Yuan Xiao-Bo. The effects of the grafted hydroxyl on the elastic properties of single-walled carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [18] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [19] Zhang Hua, Chen Xiao-Hua, Zhang Zhen-Hua, Qiu Ming, Xu Long-Shan, Yang Zhi. The first-principles calcultion of the electronic structure of finite length carbon nanotubes grafted by carboxyl. Acta Physica Sinica, 2006, 55(6): 2986-2991. doi: 10.7498/aps.55.2986
    [20] Chen Jiang-Wei, Yang Lin-Feng. Electron transport properties of the finite double-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
Metrics
  • Abstract views:  4865
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2021
  • Accepted Date:  16 September 2021
  • Available Online:  12 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回