Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit

He An Xue Cun

Citation:

Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit

He An, Xue Cun
PDF
HTML
Get Citation
  • The ratchet effect caused by superconducting vortex motion can be widely used in flux pumps, rectifiers and superconducting switches. Ginzburg-Landau theory provides a powerful tool to investigate superconducting vortex matter. In this paper, the finite difference method is used to numerically solve the time-dependent Ginzburg-Landau equation, and the fast Fourier transform method is used to solve the coupled heat conduction equation. The vortex dynamic behavior of the superconducting thin film with a linear change of critical temperature is simulated numerically, and a new way to regulate the superconducting rectification effect is proposed. The effect of critical temperature gradient and slit location on the reversal phenomenon of rectified voltage are studied. Because of the influence of edge barrier and the defect attraction potential on vortex motion, it is beneficial to observing the reversal rectified voltage with increasing AC amplitude that the defect location is near to the side of the higher critical temperature or the gradient of the critical temperature is small.
      Corresponding author: Xue Cun, xuecun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11702034, 11972298, 11702218), the Fundamental Research Fund for the Central Universities, China (Grant No. 300102121201), and the China Postdoctoral Science Foundation (Grant No. 2019M663812)
    [1]

    Silhanek A V, van Look L, Raedts S, Jonckheere R, Moshchalkov V V 2003 Phys. Rev. B 68 214504Google Scholar

    [2]

    Silhanek A V, Gillijns W, Moshchalkov V V, Metlushko V, Ilic B 2006 Appl. Phys. Lett. 89 182505Google Scholar

    [3]

    Milošević M V, Gillijns W, Silhanek A V, Libál A, Peeters F M, Moshchalkov V V 2010 Appl. Phys. Lett. 96 032503Google Scholar

    [4]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [5]

    Ooi S, Savel’ev S, Gaifullin M B, Mochiku T, Hirata K, Nori F 2007 Phys. Rev. Lett. 99 207003Google Scholar

    [6]

    Marrocco N, Pepe G P, Capretti A, Parlato L, Pagliarulo V, Peluso G, Barone A, Cristiano R, Ejrnaes M, Casaburi A, Kashiwazaki N, Taino T, Myoren H, Sobolewski R 2010 Appl. Phys. Lett. 97 092504Google Scholar

    [7]

    Kremen A, Wissberg S, Haham N, Persky E, Frenkel Y, Kalisky B 2016 Nano Lett. 16 1626Google Scholar

    [8]

    Semenov A, Charaev I, Lusche R, Ilin K, Siegel M, Hübers H W, Bralović N, Dopf K, Vodolazov D Y 2015 Phys. Rev. B 92 174518Google Scholar

    [9]

    Berdiyorov G R, MiloševićM V, Peeters F M 2012 Appl. Phys. Lett. 100 262603Google Scholar

    [10]

    Lee C S, Jankó B, Derényi I, Barabá si A L 1999 Nature 400 337Google Scholar

    [11]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602Google Scholar

    [12]

    Olson C J, Reichhardt C, Janko B, Nori F 2001 Phys. Rev. Lett. 87 177002Google Scholar

    [13]

    van de Vondel J, Gladilin V N, Silhanek A V, Gillijns W, Tempere J, Devreese J T, Moshchalkov V V 2011 Phys. Rev. Lett. 106 137003Google Scholar

    [14]

    Lu Q M, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. B 75 054502Google Scholar

    [15]

    Berdiyorov G R, Milošević M V, Covaci L, Peeters F M 2011 Phys. Rev. Lett. 107 177008Google Scholar

    [16]

    He A, Xue C, Zhou Y H 2018 Chin. Phys. B 27 057402Google Scholar

    [17]

    Ooi S, Mochikua T, Hirataa K 2008 Physica C 468 1291Google Scholar

    [18]

    Wu T C, Horng L, Wu J C, Cao R, Koláček J, Yang T J 2007 J. Appl. Phys. 102 033918Google Scholar

    [19]

    Reichhardt C, Ray D, Olson Reichhardt C J 2015 Phys. Rev. B 91 184502Google Scholar

    [20]

    Gillijns W, Silhanek A V, Moshchalkov V V, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. Lett. 99 247002Google Scholar

    [21]

    Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, Ortiz W A, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J, Silhanek A V 2013 Appl. Phys. Lett. 102 052603Google Scholar

    [22]

    Ji J D, Yuan J, He G, Jin B H, Zhu B Y, Kong X D, Jia X Q, Kang L, Jin K, Wu P H 2016 Appl. Phys. Lett. 109 242601Google Scholar

    [23]

    Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B Wai K K 2018 Nat. Nanotechnol. 13 560Google Scholar

    [24]

    Villegas J E, Savel’ev S, Nori F, Gonzalez E M, Anguita J V, Garcia R, Vicent J L 2003 Science 302 1188Google Scholar

    [25]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [26]

    de Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B, Moshchalkov V V 2007 Phys. Rev. Lett. 98 117005Google Scholar

    [27]

    He A, Xue C, Zhou Y H 2019 Appl. Phys. Lett. 115 032602Google Scholar

    [28]

    He A, Xue C 2020 Chin. Phys. B 29 127401Google Scholar

    [29]

    Kramer L, Watts-Tobin R J 1978 Phys. Rev. Lett. 40 1041Google Scholar

    [30]

    Berdiyorov G, Harrabi K, Oktasendra F, Gasmi K, Mansour A I, Maneval J P, Peeters F M 2014 Phys. Rev. B 90 054506Google Scholar

    [31]

    Sadovskyya I A, Kosheleva A E, Phillipsb C L, Karpeyevc D A, Glatz A 2015 J. Comput. Phys. 294 639Google Scholar

    [32]

    Berdiyorov G R, MiloševićM V, Latimer M L, Xiao Z L, Kwok W K, Peeters F M 2012 Phys. Rev. Lett. 109 057004Google Scholar

    [33]

    Vodolazov D Y, Peeters F M, Morelle M, Moshchalkov V V 2005 Phys. Rev. B 71 184502Google Scholar

    [34]

    Adami O A, Jelić Ž L, Xue C, Abdel-Hafiez M, Hackens B, Moshchalkov V V, Milošević M V, Van de Vondel J, Silhanek A V 2015 Phys. Rev. B 92 134506Google Scholar

    [35]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, Leroux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

  • 图 1  含长方形缺陷的临界温度梯度超导薄膜示意图, 临界温度沿着y轴从$T_{{\rm{cmin}}}$ 线性增大到$T_{{\rm{cmax}}}$. 超导薄膜宽为w, 沿着x轴无限长, 缺陷的长度和宽度分别为$c_{\rm{l}}$$c_{\rm{w}}$, 缺陷中心距离临界温度较低$T_{{\rm{cmin}}}$ 的下边界为$C_{\rm{p}}$. 沿着x轴的一方形波交流电$I_{{\rm{a}}}(t)$和沿着z轴的垂直磁场加载于超导薄膜, 沿着电流加载方向计算直流电压$V_{{\rm{dc}}}$, 磁通涡旋沿着y轴方向运动.

    Figure 1.  Schematic diagram of critical temperature gradient superconducting film with slit. The critical temperature increases linearly from $T_{{\rm{cmin}}}$ upward to $T_{{\rm{cmax}}}$ along the y axis. The superconducting film of width w is infinite along x axis. The slit length and width are $c_{\rm{l}}$and $c_{\rm{w }}$, respectively. The distance of defect center to sample upper boundary is $C_{\rm{P}}$. Superconducting film is applied by a square-wave ac current $I_{{\rm{a}}}(t)$ along x axis and a perpendicular magnetic field $H_{\rm{a}}$ along z axis, and the DC voltage $V_{{\rm{dc}}}$ is calculated along the direction of applied current. The direction of vortex motion is along y axis.

    图 2  (a)不同磁场和正反电流下电流-电压(I-V)特征曲线, 插图1—插图6表示I-V曲线上对应点的超导电子密度. 红色箭头表示输运电流的加载方向, 黑色箭头代表涡旋的运动方向. (b)缺陷位于样品中心$ C_{\rm{p}} = w/2 $ 时整流电压随交流幅值的变化规律. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\; {\rm{K }}$$T_{{\rm{cmin}}} = 4.7 \;{\rm{K}}$(见多媒体动画A1)

    Figure 2.  (a) Characteristic curves of current-voltage (I-V) at several magnetic fields for $ +I_{\rm{a}} $ and $ -I_{\rm{a}} $. Snapshots 1–6 indicate the corresponding cooper-pair density shown in the I-V curves; (b) variations of rectified voltage as a function of ac amplitude for slit located at the middle of the sample $ C_{\rm{p}} = w/2 $. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12\;{\rm{ K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively (multimedia view A1 of the supplementary materials).

    图 3  不同磁场下(a)缺陷靠近样品下边界$ C_{\rm{p}} = w/3 $和(b)缺陷靠近样品上边界$ C_{\rm{p }}= 2 w/3 $时整流电压随交流幅值的变化规律. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12 \;{\rm{K}}$$T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$(见补充材料动画A2A3)

    Figure 3.  Variations of rectified voltage as a function of ac amplitude for several magnetic fields with defect located at (a) $ C_{\rm{p}} = w/3 $ and (b) $ C_{\rm{p}} = 2 w/3 $. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} {=} 12\; {\rm{K}}$ and $T_{{\rm{cmin}}} {=} 4.7\; {\rm{K}}$, respectively (multimedia view A2 and A3 of the supplementary materials).

    图 4  缺陷靠近样品上边界($ C_{\rm{p}} = 2 w/3 $)和磁场$ H_{{\rm{a}}} = 0.1 $时超导处于平衡状态下, 当电流幅值(a) $I_{{\rm{ac}}} = 0.13$和(b) $I_{{\rm{ac}}} = $$ 0.14$时电压随时间的周期振荡曲线. 插图表示V-t曲线上对应点的超导电子密度云图, 黑色箭头代表涡旋的运动方向. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\;{\rm{ K}}$$T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$

    Figure 4.  Variations of equilibrated voltage as a function of ac amplitude time with magnetic field $ H_{{\rm{a}}} = 0.1 $ and slit location $ C_{\rm{p}} = 2 w/3 $ for (a) $ I_{{\rm{ac}}} = 0.13 $ and (b) $ I_{{\rm{ac}}} = 0.14 $. Snapshots indicate the corresponding Cooper-pair density shown in the V-t curves. The black arrows indicate the direction of vortex motion. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12 \;{\rm{K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively.

    图 5  缺陷位置为(a) $ C_{\rm{p}} = w/2 $和(b) $ C_{\rm{p}} = 2 w/3 $时整流电压随磁场和电流变化的相图. 白色虚线代表整流电压发生反转的区域. 插图表示缺陷位置$ C_{\rm{p}} = 2 w/3 $时不同磁场下和电流下的超导电子密度, 左栏表示正方向加载电流的情形, 右栏表示负方向加载电流的情形, 黑色箭头表示涡旋的运动方向. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\; {\rm{K}}$$T_{{\rm{cmin}}} = 4.7\;{\rm{ K}}$

    Figure 5.  Contour plot of $ V_{{\rm{dc}}} $ as a function of magnetic field and current amplitude with slit location (a) $ C_{\rm{p}} = w/2 $ and (b) $ C_{\rm{p}} = $$ 2 w/3 $. The white dotted lines represent the area of reversal rectified voltage. Snapshots show the superconducting Cooper-pair density at the defect location $ C_{\rm{p}} = 2 w/3 $ under different magnetic fields and currents. The left column represents the condition of applied current along the positive direction, and the right column represents that of applied current along the negative direction. The black arrows represent the direction of vortex motion. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12 \;{\rm{K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively.

    图 6  (a)缺陷处于样品中心($ C_{\rm{p}} = w/2 $)、最低临界温度$T_{{\rm{cmin}}} = 4.7\; {\rm{K }}$和磁场$ H_{{\rm{a}}} = 0.1 $, 超导样品上边界的最高临界温度分别为$ T_{{\rm{cmax}}} $ = 6, 8, 10和12 K时整流电压随交流幅值的变化规律; (b) $ I_{{\rm{ac}}} = 0.095 $和(c) $I_{{\rm{ac}}} = 0.1$超导处于平衡状态时电压随时间的周期振荡曲线. 插图表示V-t曲线上对应点的超导电子密度, 黑色箭头代表涡旋的运动方向(见补充材料多媒体动画A4和A5 )

    Figure 6.  (a) Variations of rectified voltage as a function of ac amplitude with slit location $ C_{\rm{p}} = w/2 $, $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$ and magnetic field $ H_{{\rm{a}}} = 0.1 $ for several maximum critical temperature $ T_{{\rm{cmax}}} $ = 6, 8, 10 and 12 K. Dependencies of equilibrated voltage versus time for (b) $ I_{{\rm{ac}}} = 0.095 $ and (c)$ I_{{\rm{ac}}} = $$ 0.1 $. Snapshots indicate the corresponding cooper-pair density shown in the V-t curves. The black arrows indicate the direction of vortex motion (multimedia view A4 and A5 of supplementary materials)

  • [1]

    Silhanek A V, van Look L, Raedts S, Jonckheere R, Moshchalkov V V 2003 Phys. Rev. B 68 214504Google Scholar

    [2]

    Silhanek A V, Gillijns W, Moshchalkov V V, Metlushko V, Ilic B 2006 Appl. Phys. Lett. 89 182505Google Scholar

    [3]

    Milošević M V, Gillijns W, Silhanek A V, Libál A, Peeters F M, Moshchalkov V V 2010 Appl. Phys. Lett. 96 032503Google Scholar

    [4]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [5]

    Ooi S, Savel’ev S, Gaifullin M B, Mochiku T, Hirata K, Nori F 2007 Phys. Rev. Lett. 99 207003Google Scholar

    [6]

    Marrocco N, Pepe G P, Capretti A, Parlato L, Pagliarulo V, Peluso G, Barone A, Cristiano R, Ejrnaes M, Casaburi A, Kashiwazaki N, Taino T, Myoren H, Sobolewski R 2010 Appl. Phys. Lett. 97 092504Google Scholar

    [7]

    Kremen A, Wissberg S, Haham N, Persky E, Frenkel Y, Kalisky B 2016 Nano Lett. 16 1626Google Scholar

    [8]

    Semenov A, Charaev I, Lusche R, Ilin K, Siegel M, Hübers H W, Bralović N, Dopf K, Vodolazov D Y 2015 Phys. Rev. B 92 174518Google Scholar

    [9]

    Berdiyorov G R, MiloševićM V, Peeters F M 2012 Appl. Phys. Lett. 100 262603Google Scholar

    [10]

    Lee C S, Jankó B, Derényi I, Barabá si A L 1999 Nature 400 337Google Scholar

    [11]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602Google Scholar

    [12]

    Olson C J, Reichhardt C, Janko B, Nori F 2001 Phys. Rev. Lett. 87 177002Google Scholar

    [13]

    van de Vondel J, Gladilin V N, Silhanek A V, Gillijns W, Tempere J, Devreese J T, Moshchalkov V V 2011 Phys. Rev. Lett. 106 137003Google Scholar

    [14]

    Lu Q M, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. B 75 054502Google Scholar

    [15]

    Berdiyorov G R, Milošević M V, Covaci L, Peeters F M 2011 Phys. Rev. Lett. 107 177008Google Scholar

    [16]

    He A, Xue C, Zhou Y H 2018 Chin. Phys. B 27 057402Google Scholar

    [17]

    Ooi S, Mochikua T, Hirataa K 2008 Physica C 468 1291Google Scholar

    [18]

    Wu T C, Horng L, Wu J C, Cao R, Koláček J, Yang T J 2007 J. Appl. Phys. 102 033918Google Scholar

    [19]

    Reichhardt C, Ray D, Olson Reichhardt C J 2015 Phys. Rev. B 91 184502Google Scholar

    [20]

    Gillijns W, Silhanek A V, Moshchalkov V V, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. Lett. 99 247002Google Scholar

    [21]

    Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, Ortiz W A, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J, Silhanek A V 2013 Appl. Phys. Lett. 102 052603Google Scholar

    [22]

    Ji J D, Yuan J, He G, Jin B H, Zhu B Y, Kong X D, Jia X Q, Kang L, Jin K, Wu P H 2016 Appl. Phys. Lett. 109 242601Google Scholar

    [23]

    Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B Wai K K 2018 Nat. Nanotechnol. 13 560Google Scholar

    [24]

    Villegas J E, Savel’ev S, Nori F, Gonzalez E M, Anguita J V, Garcia R, Vicent J L 2003 Science 302 1188Google Scholar

    [25]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [26]

    de Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B, Moshchalkov V V 2007 Phys. Rev. Lett. 98 117005Google Scholar

    [27]

    He A, Xue C, Zhou Y H 2019 Appl. Phys. Lett. 115 032602Google Scholar

    [28]

    He A, Xue C 2020 Chin. Phys. B 29 127401Google Scholar

    [29]

    Kramer L, Watts-Tobin R J 1978 Phys. Rev. Lett. 40 1041Google Scholar

    [30]

    Berdiyorov G, Harrabi K, Oktasendra F, Gasmi K, Mansour A I, Maneval J P, Peeters F M 2014 Phys. Rev. B 90 054506Google Scholar

    [31]

    Sadovskyya I A, Kosheleva A E, Phillipsb C L, Karpeyevc D A, Glatz A 2015 J. Comput. Phys. 294 639Google Scholar

    [32]

    Berdiyorov G R, MiloševićM V, Latimer M L, Xiao Z L, Kwok W K, Peeters F M 2012 Phys. Rev. Lett. 109 057004Google Scholar

    [33]

    Vodolazov D Y, Peeters F M, Morelle M, Moshchalkov V V 2005 Phys. Rev. B 71 184502Google Scholar

    [34]

    Adami O A, Jelić Ž L, Xue C, Abdel-Hafiez M, Hackens B, Moshchalkov V V, Milošević M V, Van de Vondel J, Silhanek A V 2015 Phys. Rev. B 92 134506Google Scholar

    [35]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, Leroux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

  • [1] Wang Yao, Jiang Lu, Zhou You-He, Xue Cun. Dependence of thermomagnetic instability on strong nonlinear E-J models in superconducting films. Acta Physica Sinica, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [2] Zhang Shuo, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Effect of defects on magnetostriction and magnetic moment evolution of iron thin films. Acta Physica Sinica, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [3] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211177
    [4] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [6] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [7] Dong Xiao-Li, Yuan Jie, Huang Yu-Long, Feng Zhong-Pei, Ni Shun-Li, Tian Jin-Peng, Zhou Fang, Jin Kui, Zhao Zhong-Xian. New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film. Acta Physica Sinica, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [8] Xing Lan-Jun, Chang Yong-Qin, Shao Chang-Jing, Wang Lin, Long Yi. Room temperature gas sensing property and sensing mechanism of Sn-doped ZnO thin film. Acta Physica Sinica, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [9] Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo. Influences of material defects and temperature on current-driven domain wall mobility. Acta Physica Sinica, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [10] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [12] Zhang Lu-Shan, Yu Hong-Fei, Guo Yong-Quan. Structural analysis of FeTe alloy and its superconducting film preparation. Acta Physica Sinica, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [13] Zhang Pei-Jian, Meng Yang, Liu Zi-Yu, Pan Xin-Yu, Liang Xue-Jin, Chen Dong-Min, Zhao Hong-Wu. Influences of dislocation distribution on the resistive switching effect of Ag-SiO2 thin films. Acta Physica Sinica, 2012, 61(10): 107703. doi: 10.7498/aps.61.107703
    [14] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu. Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [15] Shi Li-Bin, Zheng Yan, Ren Jun-Yuan, Li Ming-Biao, Zhang Guo-Hua. Strain effect on microwave surface resistance of YBa2Cu3O7-δ/LaAlO3 and Tl2Ba2CaCu2O8/LaAlO3 high temperature superconducting thin films. Acta Physica Sinica, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [16] Chen Hao, Deng Jin-Xiang, Liu Jun-Kai, Zhou Tao, Zhang Yan, Chen Guang-Hua. Phase transformation in process of deposition of cubic boron nitride thin films. Acta Physica Sinica, 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [17] Jiang Ben-Xue, Xu Jun, Li Hong-Jun, Wang Jing-Ya, Zhao Guang-Jun, Zhao Zhi-Wei. Core center distribution of Nd∶YAG crystal grown by Temperature gradient technique. Acta Physica Sinica, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [18] Xia Zhi-Lin, Shao Jian-Da, Fan Zheng-Xiu. Effect of bulk inclusion in films on damage probability. Acta Physica Sinica, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [19] Sun Xian-Kai, Lin Bi-Xia, Zhu Jun-Jie, Zhang Yang, Fu Zhu-Xi. Studies on the strain and its effect on defects in heteroepitaxial ZnO films prepared by LP-OCVD method. Acta Physica Sinica, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
  • supplement A1.gif supplement
    supplement A2.gif supplement
    supplement A3.gif supplement
    supplement A4.gif supplement
    supplement A5.gif supplement
Metrics
  • Abstract views:  3910
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2021
  • Accepted Date:  17 September 2021
  • Available Online:  04 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回