Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dependence of thermomagnetic instability on strong nonlinear E-J models in superconducting films

Wang Yao Jiang Lu Zhou You-He Xue Cun

Citation:

Dependence of thermomagnetic instability on strong nonlinear E-J models in superconducting films

Wang Yao, Jiang Lu, Zhou You-He, Xue Cun
PDF
HTML
Get Citation
  • The $E\text{-}J$ relationship in conventional conductor generally satisfies the linear Ohm's law. However, the $E\text{-}J$ model in superconductors presents strong nonlinear characteristics, which is significantly different from that of the conventional conductor. According to the nonlinear $E\text{-}J$ power law of superconducting materials, we quantitatively investigate the relationship between the magnetic-thermal stability and the nonlinear constitutive characteristic of superconducting films at different temperatures, magnetic field ramp rates, and critical current densities by using the fast Fourier transform method (FFT). We find that the strong nonlinear electromagnetic constitutive model plays a crucial role responsible for the onset and morphology (tree-like and finger-like) of the magneto-thermal instability of superconducting thin films. In addtion, the reason why similar magneto-thermal instabilities cannot be observed in conventional conductors is also explained. It can be found that the magnetic field on the border of the superconducting film increases rapidly for a larger creep exponent due to the enhancement of diamagnetism, which results in a large magnetic pressure and easily triggering off flux avalanches. Therefore, the threshold field of flux avalanches in the superconducting film decreases with flux creep exponent increasing. Finally, we present the curves that can clearly divide the $n_0\text{-}j_{c0}$ plane and $n_0\text{-}\dot {H}_a$ plane into magneto-thermal stability region and magneto-thermal instability region for superconducting thin film with different levels of nonlinearity.
      Corresponding author: Xue Cun, xuecun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972298, 12011530143)
    [1]

    Husse E, Chauvel D, Thiver C, Guilloux-Viry M, Carru J C, Perrin A 1994 Physica C 235 3379

    [2]

    Brinkman A, Veldhuis D, Mijatovic D, Rijnders G, Blank D 2001 Appl. Phys. Lett. 79 2420Google Scholar

    [3]

    Gallagher W J, Harris E P, Ketchen M B 2012 IEEE Trans. Appl. Supercond. 21 1

    [4]

    Saleh A E, Abu-Samreh M M, Al-Awaysa G M, Kitaneh M L 2008 J. Supercond. Novel Magn. 21 229Google Scholar

    [5]

    周又和, 王省哲 2013 中国科学: 物理学 力学 天文学 43 1558Google Scholar

    Zhou Y H, Wang S Z 2013 Sci. China Phys. Mech. Astron. 43 1558Google Scholar

    [6]

    Altshuler E, Johansen T H 2004 Rev. Mod. Phys. 76 471Google Scholar

    [7]

    Vestgården J I, Johansen T H, Galperin Y M 2018 J. Low Temp. Phys. 44 460Google Scholar

    [8]

    Bean C P 1964 Rev. Mod. Phys. 36 886

    [9]

    Kim Y B, Hempstead C F, Strnad A R 1962 Phys. Rev. Lett. 9 306Google Scholar

    [10]

    McDonald J, Clem J R 1996 Phys. Rev. B 53 8643Google Scholar

    [11]

    Johansen T H, Bratsberg H 1995 J. Appl. Phys. 77 3945Google Scholar

    [12]

    Shantsev D V, Galperin Y M, Johansen T H 2000 Phys. Rev. B 61 9699Google Scholar

    [13]

    Sandvold E, Rossel C 1992 Physica C 190 309Google Scholar

    [14]

    Konczykowski M, Chikumoto N, Vinokur V M, Feigelman M V 1995 Phys. Rev. B 51 3957

    [15]

    Konczykowski M 1993 Physica C 209 247Google Scholar

    [16]

    Konczykowski M, Vinokur V M, Rullier-Albenque F, Yeshurun Y, Holtzberg F 1993 Phys. Rev. B 47 5531Google Scholar

    [17]

    Kupfer A, Kresse R, Meier-Hirmer R, Salama K, Lee D, Selvamanickam V 1993 Physica C 209 243Google Scholar

    [18]

    Anderson P W 1962 Phys. Rev. Lett. 9 309Google Scholar

    [19]

    Kim Y B, Hempstead C F, Strnad A R 1963 Phys. Rev. 131 2486Google Scholar

    [20]

    Zeldov E, Amer N M, Koren G, Gupta A, Mcelfresh M W 1989 Phys. Rev. Lett. 62 3093Google Scholar

    [21]

    Nideröst M, Suter A, Visani P, Mota A C, Blatter G 1996 Phys. Rev. B 53 9286Google Scholar

    [22]

    Ban M, Ichiguchi T, Onogi T 1989 Phys. Rev. B 40 4419Google Scholar

    [23]

    Zeldov E, Amer N M, Koren G, Gupta A, McElfresh M W, Gambino R J 1990 Appl. Phys. Lett. 56 680Google Scholar

    [24]

    Gurevich A, Brandt E H 1994 Phys. Rev. Lett. 73 178Google Scholar

    [25]

    Schuster T, Kuhn H, Brandt E H 1995 Phys. Rev. B 51 697Google Scholar

    [26]

    Schuster T, Kuhn H, Brandt E H, Indenbom M, Koblischka M R, Konczykowski M 1994 Phys. Rev. B 50 16684Google Scholar

    [27]

    Schuster T, Indenbom M V, Kuhn H, Brandt E H, Konczykowski M 1994 Phys. Rev. Lett. 73 1424Google Scholar

    [28]

    Schuster T, Kuhn H, Brandt E H, Indenbom M V, Kläser M, Müller-Vogt G, Habermeier H U, Kronmüller H, Forkl A 1995 Phys. Rev. B 52 10375Google Scholar

    [29]

    Vestgården J, Shantsev D, Galperin Y, Johansen T 2007 Phys. Rev. B 76 174509Google Scholar

    [30]

    Vestgården J, Shantsev D, Galperin Y, Johansen T 2008 Phys. Rev. B 77 014521Google Scholar

    [31]

    Brandt E H 1995 Rep. Prog. Phys. 58 1465Google Scholar

    [32]

    Rhyner J 1993 Physica C 212 292Google Scholar

    [33]

    Prigozhin L, Sokolovsky V 2011 Supercond. Sci. Technol. 24 075012Google Scholar

    [34]

    Grilli F, Pardo E, Stenvall A, Nguyen D N, Yuan W, Gömöry F 2014 IEEE Trans. Appl. Supercond. 24 78Google Scholar

    [35]

    Hong Z, Coombs T A 2010 J. Supercond. Novel Magn. 23 1551Google Scholar

    [36]

    Vestgården J I, Shantsev D V, Galperin Y M, Johansen T H 2011 Phys. Rev. B 84 054537Google Scholar

    [37]

    Vestgården J I, Mikheenko P, Galperin Y M, Johansen T H 2013 New J. Phys. 15 093001Google Scholar

    [38]

    Motta M, Colauto F, Vestgården J I, Fritzsche J, Silhanek A V 2014 Phys. Rev. B 89 134508Google Scholar

    [39]

    Jing Z, Yong H D, Zhou Y H 2015 Supercond. Sci. Technol. 28 075012Google Scholar

    [40]

    Kim Y B, Hempstead C F, Strnad A R 1963 Phys. Rev. 129 528Google Scholar

    [41]

    Mints R G, Rakhmanov A L 2008 Rev. Mod. Phys. 53 551

    [42]

    Nabialek A, Niewczas M, Dabkowska H, Dabkowski A, Castellan J P, Gaulin B D 2003 Phys. Rev. B 67 024518Google Scholar

    [43]

    Mints R G 1996 Phys. Rev. B 53 12311Google Scholar

    [44]

    Zhou Y H, Yang X B 2006 Phys. Rev. B 74 054507Google Scholar

    [45]

    Huang Y, Zhang X, Zhou Y H 2016 Supercond. Sci. Technol. 29 075009Google Scholar

    [46]

    Zhang W, Xia J, Yong H D, Zhou Y H 2020 AIP Adv. 10 025021Google Scholar

    [47]

    Gou X F, Zheng X J, Zhou Y H 2007 IEEE Trans. Appl. Supercond. 17 3795Google Scholar

    [48]

    Wang Q Y, Xue C, Chen Y Q, Ou X J, Wu W, Liu W, Ma P, Sun L T, Zhao H W, Zhou Y H 2022 Physica C 593 1354002Google Scholar

    [49]

    Denisov D V, Shantsev D V, Galperin Y M, Choi E M, Lee H S, Lee S I, Bobyl A V, Goa P E, Olsen A A F, Johansen T H 2006 Phys. Rev. Lett. 97 077002Google Scholar

    [50]

    Albrecht J, Matveev A T, Djupmyr M, Schuetz G, Stuhlhofer B, Habermeier H U 2005 Appl. Phys. Lett. 87 182501Google Scholar

    [51]

    Durán C A, Gammel P L, Miller R E, Bishop D J 1995 Phys. Rev. B 52 75Google Scholar

    [52]

    Welling M S, Westerwaal R J, Lohstroh W, Wijngaarden R J 2004 Physica C 411 11Google Scholar

    [53]

    Alvarez S B, Brisbois J, Melinte S, Kramer R B G, Silhanek A V 2019 Sci. Rep. 9 3659Google Scholar

    [54]

    Leiderer P, Boneberg J, Brüll P, Bujok V, Herminghaus S 1993 Phys. Rev. Lett. 71 2646Google Scholar

    [55]

    Baruch-El E, Baziljevich M, Shapiro B Y, Johansen T H, Shaulov A, Yeshurun Y 2016 Phys. Rev. B 94 054509Google Scholar

    [56]

    Biehler B, Runge B U, Wimbush S C, Holzapfel B, Leiderer P 2005 Supercond. Sci. Technol. 18 385Google Scholar

    [57]

    Wang C H, Liu C, Zhang X Y 2021 AIP Adv. 11 045101Google Scholar

    [58]

    Wang C H, Liu C, Zhang X Y, Zhou Y H 2021 Exp. Mech. 61 1227

    [59]

    Vestgården J I, Galperin Y M, Johansen T H 2012 Physica C 479 92Google Scholar

    [60]

    Vestgården J I, Shantsev D V, Galperin Y M, Johansen T H 2012 Sci. Rep. 2 886Google Scholar

    [61]

    Lu Y R, Jing Z, Yong H D, Zhou Y H 2018 Sci. China Phys. Mech. Astron. 61 094621Google Scholar

    [62]

    Zhou Y H, Wang C, Liu C, Yong H D, Zhang X Y 2020 Phys. Rev. A 13 024036Google Scholar

    [63]

    Aranson I S, Gurevich A, Welling M S, Wijngaarden R J, Vlasko-Vlasov V K, Vinokur V M, Ulrich W 2005 Phys. Rev. Lett. 94 037002Google Scholar

    [64]

    Aranson I, Gurevich A, Vinokur V 2001 Phys. Rev. Lett. 87 067003Google Scholar

    [65]

    Lu Y R, Jing Z, Yong H D, Zhou Y H 2016 Proc. R. Soc. A 472 20160469Google Scholar

    [66]

    Jing Z, Yong H D, Zhou Y H 2016 Supercond. Sci. Technol. 29 105001Google Scholar

    [67]

    Jing Z, Yong H D, Zhou Y H 2017 J. Appl. Phys. 121 023902Google Scholar

    [68]

    Jiang L, Xue C, Burger L, Vanderheyden B, Zhou Y H 2020 Phys. Rev. B 101 224505Google Scholar

    [69]

    Jing Z, Yong H D, Zhou Y H 2017 IEEE Trans. Appl. Supercond. 27 1Google Scholar

    [70]

    Schneider M, Lipp D, Gladun A 2001 Physica C 363 6Google Scholar

    [71]

    Wen Z, Zhang H, Mueller M 2021 Supercond. Sci. Technol. 34 125019Google Scholar

    [72]

    Johansen T H, Baziljevich M, Shantsev D V, Goa P E, Galperin Y M, Kang W N, Kim H J, Choi E M, Kim M S, Lee S I 2002 Europhys. Lett. 59 599Google Scholar

    [73]

    Carm D, Colauto F, Andrade A M H, Oliveira A A M, Ortiz W A, Galperin Y M, Johansen T H 2018 Supercond. Sci. Technol. 31 115009Google Scholar

  • 图 1  (a)超导薄膜-基底系统示意图, 外加磁场随着时间线性增加并始终垂直于超导薄膜表面, 其中超导薄膜大小为$ w\times w $, 数值模拟区域大小为$ 2 L_x\times 2 L_y $; (b)超导材料$E\text{-}J$幂次本构关系, n为磁通蠕动指数, 图中黄色填充区域对应常见超导材料的$E\text{-}J$本构范围, 常规导体对应n = 1, 即欧姆定律

    Figure 1.  (a) Schematic diagram of the superconducting film-substrate system, where the applied magnetic field increases linearly with time and is always perpendicular to the surface of the superconducting film, where the superconducting film size is w × w and the numerical simulation region size is 2Lx × 2Ly; (b) E-J power instanton relationship for superconducting material, n is the flux creep index. The yellow filled area in the figure corresponds to the E-J instantonal range of common superconducting materials. The conventional conductor corresponds to n = 1, denoting the Ohm’s law

    图 2  通过数值模拟得到不同参数$ n_0 $下的超导薄膜分别在外加磁场为$\mu_0 H_{\rm{a}}$ = 1.8 mT ((a), (c), (e))和$\mu_0 H_{\rm{a}}$ = 4.0 mT((b), (d), (f))时的磁场分布. 背景温度$ T_0 $ = 2.5 K, 磁场变化率为5 T/s

    Figure 2.  Flux distributions of superconducting thin films with different parameter $ n_0 $ at the applied magnetic fields of $ \mu_0 H_{\rm{a}} $ = 1.8 mT ((a), (c), (e)) and $ \mu_0 H_{\rm{a}} $ = 4.0 mT ((b), (d), (f)). The substrate temperature is $ T_0 $ = 2.5 K and the ramp rate is $ \mu_0\dot{H}_{\rm{a}} $ = 5 T/s

    图 3  (a)磁通崩塌阈值随着参数$ n_0 $的变化规律, 曲线下方表示薄膜保持磁热稳定状态, 曲线上方表示薄膜出现磁热不稳定; (b)不同$ n_0 $下超导薄膜的最大温度随外加磁场的变化; (c)不同$ n_0 $下的磁化曲线图. 数值模拟的背景温度为$ T_0 = 2.5 $ K, 磁场变化率为5 T/s

    Figure 3.  (a) The threshold field for the onset of flux avalanches in superconducting films with different $ n_0 $. The lower region indicates the film is in magneto-thermal stable state, while the upper region indicates the thermomagnetic instability. (b) Maximum temperature and (c) magnetic moment in superconducting films as a function of increasing applied field for three different $ n_0 $. The substrate temperature is $ T_0 $ = 2.5 K and the ramp rate is $\mu_0\dot{H}_{\rm{a}}$ = 5 T/s

    图 4  数值模拟了不同温度场下($ T_0 $ = 1.5, 2.5, 3.0 K), 参数$ n_0 $为3, 18, 29时的超导薄膜在相同磁场$\mu_0 H_{\rm{a}}$ = 3.1 mT下的磁场分布

    Figure 4.  Distribution of magnetic field $ B_z $ in superconducting fillms at the same applied field $\mu_0 H_{\rm{a}}$ = 3.1 mT with $ n_0 $ = 3, 18, 29 and $ T_0 $ = 1.5, 2.5, 3.0 K

    图 5  通过数值模拟得到了外加垂直磁场分别为$\mu_0 H_{\rm{a}}$ = 1.6, 6.2 mT时, 不同临界电流密度下的超导薄膜内磁场分布

    Figure 5.  Magnetic flux distribution in supercondeucting films with different critical current densities at $\mu_0 H_{\rm{a}}$ = 1.6, 6.2 mT

    图 6  超导薄膜内磁通崩塌阈值随临界电流密度$j_{{\rm{c}}0}$的变化. 曲线上方表示超导薄膜内磁热不稳定区域, 曲线下方表示超导薄膜内保持磁热稳定状态

    Figure 6.  The threshold field $\mu_0 H_{\rm{a}}$ for the onset of flux avalanches as a function of critical current density $j_{{\rm{c}}0}$The lower region indicates the film is in magneto-thermal stable state, while the upper region indicates the thermomagnetic instability

    图 7  $ n_0 $$\text- j_{{\rm{c}}0}$平面内超导薄膜磁热稳定性/不稳定性的范围及分界线, 图中黄色区域表示薄膜磁热不稳定, 青色区域表示薄膜保持磁热稳定状态, 误差棒表示分界线的精度

    Figure 7.  Thermomagnetic stability/instability diagram in the $ n_0\text{-} j_{{\rm{c}}0} $ planes. Yellow and green denote the regions of flux avalanches and smooth penetration. The error bars show the accuracy of the dividing lines

    图 8  磁场变化率为$ {\mu_0{\dot{{\rm{H}}}}_{\rm{a}} } $ = 2 T/s, $ { \mu_0\dot{{\rm{H}}}_{\rm{a}} } $ = 9 T/s, $ { \mu_0\dot{{\rm{H}}}_{\rm{a}} } $ = 15 T/s情形下的薄膜内磁场分布 (a), (c), (e) 表示外加磁场加载到1.8 mT时的薄膜内部磁场分布; (b), (d), (f)表示外加磁场加载到4.0 mT时的薄膜内部磁场分布. 背景温度场为$ T_0 = 2.5 $ K

    Figure 8.  Magnetic field distribution in thin film at $ \mu_0 H_a $ = 1.8 mT ((a), (c), (e)) and 4.0 mT ((b), (d), (f)) for $\mu_0\dot{H}_{\rm{a}}$ = 2, 9 and 15 T/s. The substrate temperature is $ T_0 $ = 2.5 K

    图 9  $n_0\text{-}{ \mu_0\dot{H}_{\rm{a}}}$平面内超导薄膜磁热稳定性/不稳定性的范围及分界线, 黄色区域表示薄膜内部磁热不稳定, 青色区域表示薄膜保持磁热稳定状态, 误差棒表示分界线的精度

    Figure 9.  Thermomagnetic stability/instability diagram in the $n_0\text{-} { \mu_0\dot{H}_{\rm{a}}}$ planes. Yellow and green denote the regions of flux avalanches and smooth penetration, respectively. The error bars show the accuracy of the dividing lines

  • [1]

    Husse E, Chauvel D, Thiver C, Guilloux-Viry M, Carru J C, Perrin A 1994 Physica C 235 3379

    [2]

    Brinkman A, Veldhuis D, Mijatovic D, Rijnders G, Blank D 2001 Appl. Phys. Lett. 79 2420Google Scholar

    [3]

    Gallagher W J, Harris E P, Ketchen M B 2012 IEEE Trans. Appl. Supercond. 21 1

    [4]

    Saleh A E, Abu-Samreh M M, Al-Awaysa G M, Kitaneh M L 2008 J. Supercond. Novel Magn. 21 229Google Scholar

    [5]

    周又和, 王省哲 2013 中国科学: 物理学 力学 天文学 43 1558Google Scholar

    Zhou Y H, Wang S Z 2013 Sci. China Phys. Mech. Astron. 43 1558Google Scholar

    [6]

    Altshuler E, Johansen T H 2004 Rev. Mod. Phys. 76 471Google Scholar

    [7]

    Vestgården J I, Johansen T H, Galperin Y M 2018 J. Low Temp. Phys. 44 460Google Scholar

    [8]

    Bean C P 1964 Rev. Mod. Phys. 36 886

    [9]

    Kim Y B, Hempstead C F, Strnad A R 1962 Phys. Rev. Lett. 9 306Google Scholar

    [10]

    McDonald J, Clem J R 1996 Phys. Rev. B 53 8643Google Scholar

    [11]

    Johansen T H, Bratsberg H 1995 J. Appl. Phys. 77 3945Google Scholar

    [12]

    Shantsev D V, Galperin Y M, Johansen T H 2000 Phys. Rev. B 61 9699Google Scholar

    [13]

    Sandvold E, Rossel C 1992 Physica C 190 309Google Scholar

    [14]

    Konczykowski M, Chikumoto N, Vinokur V M, Feigelman M V 1995 Phys. Rev. B 51 3957

    [15]

    Konczykowski M 1993 Physica C 209 247Google Scholar

    [16]

    Konczykowski M, Vinokur V M, Rullier-Albenque F, Yeshurun Y, Holtzberg F 1993 Phys. Rev. B 47 5531Google Scholar

    [17]

    Kupfer A, Kresse R, Meier-Hirmer R, Salama K, Lee D, Selvamanickam V 1993 Physica C 209 243Google Scholar

    [18]

    Anderson P W 1962 Phys. Rev. Lett. 9 309Google Scholar

    [19]

    Kim Y B, Hempstead C F, Strnad A R 1963 Phys. Rev. 131 2486Google Scholar

    [20]

    Zeldov E, Amer N M, Koren G, Gupta A, Mcelfresh M W 1989 Phys. Rev. Lett. 62 3093Google Scholar

    [21]

    Nideröst M, Suter A, Visani P, Mota A C, Blatter G 1996 Phys. Rev. B 53 9286Google Scholar

    [22]

    Ban M, Ichiguchi T, Onogi T 1989 Phys. Rev. B 40 4419Google Scholar

    [23]

    Zeldov E, Amer N M, Koren G, Gupta A, McElfresh M W, Gambino R J 1990 Appl. Phys. Lett. 56 680Google Scholar

    [24]

    Gurevich A, Brandt E H 1994 Phys. Rev. Lett. 73 178Google Scholar

    [25]

    Schuster T, Kuhn H, Brandt E H 1995 Phys. Rev. B 51 697Google Scholar

    [26]

    Schuster T, Kuhn H, Brandt E H, Indenbom M, Koblischka M R, Konczykowski M 1994 Phys. Rev. B 50 16684Google Scholar

    [27]

    Schuster T, Indenbom M V, Kuhn H, Brandt E H, Konczykowski M 1994 Phys. Rev. Lett. 73 1424Google Scholar

    [28]

    Schuster T, Kuhn H, Brandt E H, Indenbom M V, Kläser M, Müller-Vogt G, Habermeier H U, Kronmüller H, Forkl A 1995 Phys. Rev. B 52 10375Google Scholar

    [29]

    Vestgården J, Shantsev D, Galperin Y, Johansen T 2007 Phys. Rev. B 76 174509Google Scholar

    [30]

    Vestgården J, Shantsev D, Galperin Y, Johansen T 2008 Phys. Rev. B 77 014521Google Scholar

    [31]

    Brandt E H 1995 Rep. Prog. Phys. 58 1465Google Scholar

    [32]

    Rhyner J 1993 Physica C 212 292Google Scholar

    [33]

    Prigozhin L, Sokolovsky V 2011 Supercond. Sci. Technol. 24 075012Google Scholar

    [34]

    Grilli F, Pardo E, Stenvall A, Nguyen D N, Yuan W, Gömöry F 2014 IEEE Trans. Appl. Supercond. 24 78Google Scholar

    [35]

    Hong Z, Coombs T A 2010 J. Supercond. Novel Magn. 23 1551Google Scholar

    [36]

    Vestgården J I, Shantsev D V, Galperin Y M, Johansen T H 2011 Phys. Rev. B 84 054537Google Scholar

    [37]

    Vestgården J I, Mikheenko P, Galperin Y M, Johansen T H 2013 New J. Phys. 15 093001Google Scholar

    [38]

    Motta M, Colauto F, Vestgården J I, Fritzsche J, Silhanek A V 2014 Phys. Rev. B 89 134508Google Scholar

    [39]

    Jing Z, Yong H D, Zhou Y H 2015 Supercond. Sci. Technol. 28 075012Google Scholar

    [40]

    Kim Y B, Hempstead C F, Strnad A R 1963 Phys. Rev. 129 528Google Scholar

    [41]

    Mints R G, Rakhmanov A L 2008 Rev. Mod. Phys. 53 551

    [42]

    Nabialek A, Niewczas M, Dabkowska H, Dabkowski A, Castellan J P, Gaulin B D 2003 Phys. Rev. B 67 024518Google Scholar

    [43]

    Mints R G 1996 Phys. Rev. B 53 12311Google Scholar

    [44]

    Zhou Y H, Yang X B 2006 Phys. Rev. B 74 054507Google Scholar

    [45]

    Huang Y, Zhang X, Zhou Y H 2016 Supercond. Sci. Technol. 29 075009Google Scholar

    [46]

    Zhang W, Xia J, Yong H D, Zhou Y H 2020 AIP Adv. 10 025021Google Scholar

    [47]

    Gou X F, Zheng X J, Zhou Y H 2007 IEEE Trans. Appl. Supercond. 17 3795Google Scholar

    [48]

    Wang Q Y, Xue C, Chen Y Q, Ou X J, Wu W, Liu W, Ma P, Sun L T, Zhao H W, Zhou Y H 2022 Physica C 593 1354002Google Scholar

    [49]

    Denisov D V, Shantsev D V, Galperin Y M, Choi E M, Lee H S, Lee S I, Bobyl A V, Goa P E, Olsen A A F, Johansen T H 2006 Phys. Rev. Lett. 97 077002Google Scholar

    [50]

    Albrecht J, Matveev A T, Djupmyr M, Schuetz G, Stuhlhofer B, Habermeier H U 2005 Appl. Phys. Lett. 87 182501Google Scholar

    [51]

    Durán C A, Gammel P L, Miller R E, Bishop D J 1995 Phys. Rev. B 52 75Google Scholar

    [52]

    Welling M S, Westerwaal R J, Lohstroh W, Wijngaarden R J 2004 Physica C 411 11Google Scholar

    [53]

    Alvarez S B, Brisbois J, Melinte S, Kramer R B G, Silhanek A V 2019 Sci. Rep. 9 3659Google Scholar

    [54]

    Leiderer P, Boneberg J, Brüll P, Bujok V, Herminghaus S 1993 Phys. Rev. Lett. 71 2646Google Scholar

    [55]

    Baruch-El E, Baziljevich M, Shapiro B Y, Johansen T H, Shaulov A, Yeshurun Y 2016 Phys. Rev. B 94 054509Google Scholar

    [56]

    Biehler B, Runge B U, Wimbush S C, Holzapfel B, Leiderer P 2005 Supercond. Sci. Technol. 18 385Google Scholar

    [57]

    Wang C H, Liu C, Zhang X Y 2021 AIP Adv. 11 045101Google Scholar

    [58]

    Wang C H, Liu C, Zhang X Y, Zhou Y H 2021 Exp. Mech. 61 1227

    [59]

    Vestgården J I, Galperin Y M, Johansen T H 2012 Physica C 479 92Google Scholar

    [60]

    Vestgården J I, Shantsev D V, Galperin Y M, Johansen T H 2012 Sci. Rep. 2 886Google Scholar

    [61]

    Lu Y R, Jing Z, Yong H D, Zhou Y H 2018 Sci. China Phys. Mech. Astron. 61 094621Google Scholar

    [62]

    Zhou Y H, Wang C, Liu C, Yong H D, Zhang X Y 2020 Phys. Rev. A 13 024036Google Scholar

    [63]

    Aranson I S, Gurevich A, Welling M S, Wijngaarden R J, Vlasko-Vlasov V K, Vinokur V M, Ulrich W 2005 Phys. Rev. Lett. 94 037002Google Scholar

    [64]

    Aranson I, Gurevich A, Vinokur V 2001 Phys. Rev. Lett. 87 067003Google Scholar

    [65]

    Lu Y R, Jing Z, Yong H D, Zhou Y H 2016 Proc. R. Soc. A 472 20160469Google Scholar

    [66]

    Jing Z, Yong H D, Zhou Y H 2016 Supercond. Sci. Technol. 29 105001Google Scholar

    [67]

    Jing Z, Yong H D, Zhou Y H 2017 J. Appl. Phys. 121 023902Google Scholar

    [68]

    Jiang L, Xue C, Burger L, Vanderheyden B, Zhou Y H 2020 Phys. Rev. B 101 224505Google Scholar

    [69]

    Jing Z, Yong H D, Zhou Y H 2017 IEEE Trans. Appl. Supercond. 27 1Google Scholar

    [70]

    Schneider M, Lipp D, Gladun A 2001 Physica C 363 6Google Scholar

    [71]

    Wen Z, Zhang H, Mueller M 2021 Supercond. Sci. Technol. 34 125019Google Scholar

    [72]

    Johansen T H, Baziljevich M, Shantsev D V, Goa P E, Galperin Y M, Kang W N, Kim H J, Choi E M, Kim M S, Lee S I 2002 Europhys. Lett. 59 599Google Scholar

    [73]

    Carm D, Colauto F, Andrade A M H, Oliveira A A M, Ortiz W A, Galperin Y M, Johansen T H 2018 Supercond. Sci. Technol. 31 115009Google Scholar

  • [1] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [2] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [3] Dong Xiao-Li, Yuan Jie, Huang Yu-Long, Feng Zhong-Pei, Ni Shun-Li, Tian Jin-Peng, Zhou Fang, Jin Kui, Zhao Zhong-Xian. New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film. Acta Physica Sinica, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [4] Zhang Lu-Shan, Yu Hong-Fei, Guo Yong-Quan. Structural analysis of FeTe alloy and its superconducting film preparation. Acta Physica Sinica, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [5] Shi Li-Bin, Zheng Yan, Ren Jun-Yuan, Li Ming-Biao, Zhang Guo-Hua. Strain effect on microwave surface resistance of YBa2Cu3O7-δ/LaAlO3 and Tl2Ba2CaCu2O8/LaAlO3 high temperature superconducting thin films. Acta Physica Sinica, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [6] He Guo-Liang, He Yan-Wen, Zhao Zhi-Gang, Liu Mei. Two-step depinning and reentrant superconducting phase of moving vortex lattice in disordered superconductors. Acta Physica Sinica, 2006, 55(2): 839-843. doi: 10.7498/aps.55.839
    [7] Wang Guang-Jun, Wang Fang, Shen Bao-Gen. Magnetovolume instability in compound LaFe11.5Si1.5. Acta Physica Sinica, 2005, 54(6): 2868-2872. doi: 10.7498/aps.54.2868
    [8] Xu Hai-Ying, Zhao Zhi-Gang, Liu Mei. Spectrum analysis of voltage noise of moving vortex lattice and dynamic phase transition. Acta Physica Sinica, 2005, 54(6): 2924-2928. doi: 10.7498/aps.54.2924
    [9] Chi Chang-Yun, Zhang Jin-Cang, Li Ling-Wei, Liu Fen, Li Wen-Feng, Jing Chao, Cao Shi-Xun, Muralidhar Miryala, Yao Xin. Flux jumps in textured (Nd0.33Eu0.33Gd0.33)Ba2Cu3O7-δ superconductor with high content Gd-211 phase. Acta Physica Sinica, 2005, 54(5): 2307-2312. doi: 10.7498/aps.54.2307
    [10] Shi Qing-Fan, Zheng Jun-Juan, Wang Qi. Effect of microwave cavity Q-value on the threshold of instability and autooscilations. Acta Physica Sinica, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [11] Zhao Zhi-Gang, He Guo-Liang, Wang Yong-Gang, Liu Mei. Study on lower-frequency voltage noise of moving vortex lattice in type-Ⅱsuperconductors. Acta Physica Sinica, 2004, 53(8): 2751-2754. doi: 10.7498/aps.53.2751
    [12] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [13] Liu Jin-Yuan, Gong Ye, Wang Xiao-Gang, Ma Teng-Cai, Lv Wen-Yan. . Acta Physica Sinica, 2000, 49(3): 502-507. doi: 10.7498/aps.49.502
    [14] LIU JIN-YUAN, GONG YE, LI GUO-BING, MA TENG-CAI, ZHANG LIN. THE HELICAL INSTABILITY OF ARCS FOR LINEAR HEAT FLUX POTENTIAL MODEL IN AN AXIAL MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [15] ZENG ZHAO-YANG, SHI KE-XIN, YU ZHENG, DING SHI-YING, ZHOU YI-RU, YE BING. FLUX MOTION AND CRITICAL CURRENT CHARACTERISTICS OF Ag-SHEATHED Bi1.8Pb0.4Sr2Ca2.2Cu3Oy TAPES. Acta Physica Sinica, 1993, 42(7): 1160-1166. doi: 10.7498/aps.42.1160
    [16] ZHANG JIN-XIU, ZHENG WEN-GUANG, DU ZHONG-LIAN, LIN GUANG-MING, LIANG KAI-FENG, LIN ZHI-CHENG. INTERNAL FRICTION PEAK DUE TO MOVING FLUX IN Bi0.8 Pb0.2SrCaCuOy SUPERCONDUCTOR. Acta Physica Sinica, 1990, 39(8): 84-89. doi: 10.7498/aps.39.84
    [17] TU CHUAN-YI. THE LOWER-HYBRID-DRIFT INSTABILITY IN THE MAGNETOPAUSE. Acta Physica Sinica, 1982, 31(1): 1-16. doi: 10.7498/aps.31.1
    [18] SHI CHANG-HE. MAGNETOHYDRODYNAMIC INSTABILITY OF A NONHOMOGE-NEOUS PLASMA LAMINAR STREAM. Acta Physica Sinica, 1979, 28(2): 263-267. doi: 10.7498/aps.28.263
    [19] JIA WEI-YI, ZHANG PENG-XIANG. ON THE OPTIMUM COMPENSATION OF THE TEMPERATURE INSTABILITIES CAUSED BY THE MAGNETOCRYSTALLINE ANISOTROPY FIELD IN YIG MICROWAVE DEVICES. Acta Physica Sinica, 1976, 25(3): 254-264. doi: 10.7498/aps.25.254
    [20] . Acta Physica Sinica, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
Metrics
  • Abstract views:  4325
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  17 February 2022
  • Accepted Date:  01 May 2022
  • Available Online:  07 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回