-
In order to compute the multipactor thresholds of microwave devices with high efficiency and precision,a novel fast particle-in-cell (PIC) method is proposed,which takes advantage of the frequency-domain (FD) electromagnetic field solver of CST Microwave Studio (MWS).At the initial stage of multipactor (when there are not many electrons in the device),the self-consistent field generated by the electrons is much smaller than the applied electromagnetic field. Therefore it can be ignored in calculating the multipactor threshold and this will significantly reduce the computation burden.During simulations of multipactor process,the FD field pre-calculated by CST MWS is converted into timedomain (TD) scaling with the square root of the input power.Then the electron motion is investigated by Boris algorithm.When the electrons hit the boundaries of the simulation region,where triangular facets from CST are used for discretization,the secondary electrons will be emitted.After a series of simulations with variable input powers,the multipactor threshold is determined according to time evolution of the electron number.The multipactor thresholds in a parallel plate and a coaxial transmission line are investigated,and used as relevant verifications.Compared with the CST Particle Studio (PS),the fast method obtains almost the same thresholds,while the computational efficiency is improved by more than one order of magnitude.Since the self-consistent field generated by the electrons is ignored in the fast method and it is considered in CST PS,the results validate that the self-consistent field can be ignored in calculating the multipactor threshold.Finally,taking for example a parallel plate transmission line and a stepped impedance transformer,we study the effect of the number of initial macro-particles on the calculation precision.When the initial particles are so few that they can hardly reflect the randomness of the multipactor process,a higher calculated value will be resulted in.With the increase of the number of initial macro-particles,the calculated multipactor threshold is lower and more accurate.It is convergent when the number reaches about 2000 for the parallel plate transmission line and 4000 for the stepped impedance transformer,respectively.Taking into account other microwave devices with more complex electromagnetic field distribution,in order to ensure precision,it is recommended to select the number of initial macro-particles to be 8000.In addition,although CST MWS is used to obtain the electromagnetic field and boundary information in this paper,of course,other electromagnetic softwares (such as HFSS) can also be adopted as an alternative.
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[4] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[5] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[6] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[7] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[8] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[9] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[10] Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114
[11] Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193
[12] Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400
[13] Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54
[14] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
[15] Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]
[16] Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108
[17] You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546
[18] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]
[19] Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]
[20] Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3
[21] Möller T, Trumbore B 1997 J. Graph. Tool. 2 21
[22] Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963
[23] Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404
[24] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]
[25] Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]
期刊类型引用(12)
1. 张娜,曹猛,王瑞,白春江,崔万照. 星载微波部件微放电阈值的改进多粒子蒙特卡罗计算方法. 高电压技术. 2024(04): 1752-1759 . 百度学术
2. 李韵,封国宝,谢贵柏,苗光辉,李小军,崔万照,贺永宁. 大功率铁磁性微波部件微放电演变机理与抑制. 强激光与粒子束. 2022(06): 33-38 . 百度学术
3. 吴荣燕,周剑良,阳璞琼. 热电子发射同轴二极管几何结构对空间电荷限制流的影响. 原子能科学技术. 2021(08): 1516-1522 . 百度学术
4. 吴慧栋,孙铜生,凌方庆. 微波干燥过程中不同物料的干燥效率研究. 安徽科技学院学报. 2021(06): 99-105 . 百度学术
5. 骆新江,张忠海. 传输线理论场的可视化教学实验. 实验室研究与探索. 2019(03): 139-143 . 百度学术
6. 翟永贵,李记肖,王洪广,张剑锋,李韵,李永东. 基于GPU的微波器件微放电阈值快速粒子模拟. 真空电子技术. 2019(03): 29-32 . 百度学术
7. 赵德刚. 电视传输线理论与实际应用. 黑龙江科学. 2019(12): 122-123 . 百度学术
8. 于海兵,胡明辉,梁文龙,瞿波. C波段行波管同轴输出窗的研究. 真空电子技术. 2019(04): 41-44+50 . 百度学术
9. 林舒,翟永贵,张磊,王洪广,王瑞,李永东,刘纯亮. 粒子模拟在空间大功率微波器件微放电效应研究中的应用. 真空电子技术. 2019(06): 55-61 . 百度学术
10. 翟永贵,李记肖,王洪广,林舒,李永东. 微波器件微放电阈值功率自适应扫描方法. 强激光与粒子束. 2018(07): 59-63 . 百度学术
11. 翟永贵,王瑞,王洪广,林舒,陈坤,李永东. 介质部分填充平行平板传输线微放电过程分析. 物理学报. 2018(15): 381-388 . 百度学术
12. 翟永贵,王瑞,王洪广,李记肖,李韵,李永东. 铁氧体环形器微放电阈值快速粒子模拟. 真空电子技术. 2017(02): 11-13+28 . 百度学术
其他类型引用(9)
-
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290
[4] Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399
[5] Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446
[6] Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580
[7] Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110
[8] Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331
[9] Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508
[10] Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114
[11] Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193
[12] Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400
[13] Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54
[14] Nieter C, Cary J R 2004 J. Comput. Phys. 196 448
[15] Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]
[16] Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108
[17] You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546
[18] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]
[19] Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]
[20] Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3
[21] Möller T, Trumbore B 1997 J. Graph. Tool. 2 21
[22] Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963
[23] Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404
[24] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]
[25] Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]
期刊类型引用(12)
1. 张娜,曹猛,王瑞,白春江,崔万照. 星载微波部件微放电阈值的改进多粒子蒙特卡罗计算方法. 高电压技术. 2024(04): 1752-1759 . 百度学术
2. 李韵,封国宝,谢贵柏,苗光辉,李小军,崔万照,贺永宁. 大功率铁磁性微波部件微放电演变机理与抑制. 强激光与粒子束. 2022(06): 33-38 . 百度学术
3. 吴荣燕,周剑良,阳璞琼. 热电子发射同轴二极管几何结构对空间电荷限制流的影响. 原子能科学技术. 2021(08): 1516-1522 . 百度学术
4. 吴慧栋,孙铜生,凌方庆. 微波干燥过程中不同物料的干燥效率研究. 安徽科技学院学报. 2021(06): 99-105 . 百度学术
5. 骆新江,张忠海. 传输线理论场的可视化教学实验. 实验室研究与探索. 2019(03): 139-143 . 百度学术
6. 翟永贵,李记肖,王洪广,张剑锋,李韵,李永东. 基于GPU的微波器件微放电阈值快速粒子模拟. 真空电子技术. 2019(03): 29-32 . 百度学术
7. 赵德刚. 电视传输线理论与实际应用. 黑龙江科学. 2019(12): 122-123 . 百度学术
8. 于海兵,胡明辉,梁文龙,瞿波. C波段行波管同轴输出窗的研究. 真空电子技术. 2019(04): 41-44+50 . 百度学术
9. 林舒,翟永贵,张磊,王洪广,王瑞,李永东,刘纯亮. 粒子模拟在空间大功率微波器件微放电效应研究中的应用. 真空电子技术. 2019(06): 55-61 . 百度学术
10. 翟永贵,李记肖,王洪广,林舒,李永东. 微波器件微放电阈值功率自适应扫描方法. 强激光与粒子束. 2018(07): 59-63 . 百度学术
11. 翟永贵,王瑞,王洪广,林舒,陈坤,李永东. 介质部分填充平行平板传输线微放电过程分析. 物理学报. 2018(15): 381-388 . 百度学术
12. 翟永贵,王瑞,王洪广,李记肖,李韵,李永东. 铁氧体环形器微放电阈值快速粒子模拟. 真空电子技术. 2017(02): 11-13+28 . 百度学术
其他类型引用(9)
Catalog
Metrics
- Abstract views: 7177
- PDF Downloads: 277
- Cited By: 21