Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of secondary electrons on SGEMP response

Zhang Han-Tian Zhou Qian-Hong Zhou Hai-Jing Sun Qiang Song Meng-Meng Dong Ye Yang Wei Yao Jian-Sheng

Citation:

Effect of secondary electrons on SGEMP response

Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng
PDF
HTML
Get Citation
  • It is difficult to effectively shield the system generated electromagnetic pulse (SGEMP), which can significantly affect the performance of important electronic devices and infrastructure, such as low-orbit spacecraft. Numerical simulation is an essential way to study the SGEMP response. However, many previous studies ignored or simplified the effect of secondary electron emission in their models. In this paper, a three-dimensional electromagnetic particle-in-cell numerical simulation model is developed to evaluate the effect of secondary electrons on the SGEMP response of two typical structures (external SGEMP and cavity SGEMP, respectively) under different current densities (0.1–100 A/cm2) and different materials (Al, Cu and Au). A right cylinder or cylindrical cavity with a length of 100 mm is used. The photoelectrons produced by the interaction between the X-ray photon and metal are emitted from one end of the system and assumed to be monoenergetic. The photoelectron pulse follows a sine-squared distribution, and its full width at half maximum is 1 ns. Some important parameters of secondary electrons are discussed and summarized, including the emission coefficients of elastically and inelastically backscattered electrons, as well as the probability density functions of emission angles and energies. The results show that ignoring the secondary emission in the simulation model leads the peak electric field to be underestimated by twice-thrice, and the duration of electric field response by more than 10%. The oscillation frequency and the amplitude of the second peak of the tangential magnetic field are also increased, with the secondary electrons considered. Among various types of secondary electrons, backscattered electrons have a dominant effect on the change of SGEMP. The effect of true secondary electrons is about 1/5 of that of backscattered electrons. The effect of secondary electrons on SGEMP response increases with a higher atomic number of the material used in the system, mainly due to higher backscattering emission coefficient and a high ratio of high energy inelastically backscattered electrons. The secondary electrons will influence the response of the external SGEMP only when the space charge effect is strong (high X-ray fluence). While the response of the cavity SGEMP is more easily affected by the secondary electrons even at a relatively low X-ray fluence. This paper helps to better obtain the SGEMP response of a specific device under strong radiation through numerical simulation.
      Corresponding author: Zhou Qian-Hong, zhou_qianhong@qq.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 12005023)
    [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋 译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社) 第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Woods A J, Wenaas E P 1976 IEEE Trans. Nucl. Sci. 23 1903Google Scholar

    [6]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [7]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [8]

    王泰春, 王玉芝 1986 计算物理 3 86

    Wang T C, Wang Y Z 1986 Chinese J. Comput. Phys. 3 86

    [9]

    Li J X, Cheng Y H, Wu W, Zhou H 2008 Proceedings of the 14th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology Urumqi, China, July 15−20, 2008 p735

    [10]

    Holland R 1995 IEEE Trans. Electromagn. Compat. 37 433Google Scholar

    [11]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2−7, 2014 p00051

    [12]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [13]

    孙会芳, 张芳, 董志伟 2016 计算物理 33 434Google Scholar

    Sun H F, Zhang F, Dong Z W 2016 Chinese J. Comput. Phys. 33 434Google Scholar

    [14]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [15]

    Chen J H, Chao Z, Deng J H, Li Z D Z 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [16]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [17]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [18]

    Wenaas E P, Woods A J 1976 IEEE Trans. Nucl. Sci. 23 1921Google Scholar

    [19]

    周俊 2009 博士学位论文(成都: 电子科技大学)

    Zhou J 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [20]

    Reimer L 2000 Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (New York: Springer) p4

    [21]

    谢爱根, 裴元吉, 王荣, 孙红兵 2005 高能物理与核物理 5 530

    Xie A G, Pei Y J, Wang R, Sun H B 2005 High Energy Phys. Nuclear Phys. 5 530

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [23]

    Valfells Á, Singh A, Kolander M J, Granatstein V L 2002 IEEE Trans. Plasma Sci. 30 1271Google Scholar

    [24]

    Furman M A, Pivi M T F 2002 Phys. Rev. Spec. Top. - Accel. Beams 5 124404Google Scholar

    [25]

    Sternglass E J 1954 Phys. Rev. 95 345Google Scholar

    [26]

    Joy D C 1995 Scanning 17 270Google Scholar

    [27]

    Hussain A, Yang L H, Mao S F, Da B, Tőkési K, Ding Z H 2021 Nucl. Mater. Energy 26 100862Google Scholar

    [28]

    刘腊群, 刘大刚, 王学琼, 彭凯, 杨超 2012 强激光与粒子束 24 1980Google Scholar

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980Google Scholar

    [29]

    Staub P F 1994 J. Phys. D Appl. Phys. 27 1533Google Scholar

    [30]

    Matsukawa T, Shimizu R, Hashimoto H 1974 J. Phys. D Appl. Phys. 7 695Google Scholar

    [31]

    陈剑楠, 陶应龙, 陈再高, 王玥 2018 现代应用物理 9 040501Google Scholar

    Chen J N, Tao Y L, Chen Z G, Wang Y 2018 Modern Appl. Phys. 9 040501Google Scholar

    [32]

    郭景海, 周辉, 吴伟, 程引会, 李进玺, 马良, 赵墨 2016 核电子学与探测技术 36 512Google Scholar

    Guo J H, Zhou H, Wu W, Cheng Y H, Li J X, Ma L, Zhao M 2016 Nuclear Electronics and Detection Techol. 36 512Google Scholar

  • 图 1  不同原子序数、入射能量条件下, 法向入射电子的背散射电子发射系数(离散点来自Joy[20]总结的实验数据, 实线由式(5)计算)

    Figure 1.  Backscattering coefficient of normally incident electrons for different Ein and atomic numbers. Symbols, experimental data from Joy[20]; lines, calculated by Equation (5).

    图 2  计算模型示意图 (a)腔体外SGEMP; (b)腔体内SGEMP

    Figure 2.  Schematics of the calculation domain: (a) The external SGEMP; (b) the internal SGEMP.

    图 3  不同时刻电子的空间分布(J0 = 5 A/cm2, E0 = 5 keV). (a)(b)(c)考虑二次电子发射; (d)无二次电子发射的情况

    Figure 3.  Distribution of electrons at different moments on the condition J0 = 5 A/cm2 and E0 = 5 keV: (a)(b)(c)Including secondary emission; (d)without secondary electrons.

    图 4  不同峰值电流密度条件下, P1位置的轴向电场强度Ex (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Figure 4.  Axial electric field Ex at P1 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV).

    图 5  不同峰值电流密度条件下, P2位置的径向电场强度Ey (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, 点线: 仅考虑背散射电子, E0 = 5 keV)

    Figure 5.  Radial electric field Ey at P2 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons; dot line: only considering backscattering electrons, E0 = 5 keV).

    图 6  J0 = 5, 100 A/cm2条件下, P2位置的磁感应强度BZ (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Figure 6.  Magnetic field BZ at P2 for J0 = 5, 100 A/cm2 (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV)

    图 7  不同腔体材料, P1位置的轴向电场强度Ex(J0 = 1 A/cm2, E0 = 5 keV)

    Figure 7.  Axial electric field Ex at P1 for different materials (J0 = 1 A/cm2, E0 = 5 keV).

    图 8  不同位置(P1, P2, P3)的轴向电场强度Ex (J0 = 1 A/cm2, E0 = 5 keV)

    Figure 8.  Axial electric field Ex at P1, P2 and P3 (J0 = 1 A/cm2, E0 = 5 keV).

    图 9  不同峰值电流密度下, P1位置的轴向电场强度Ex (实线: 未考虑二次电子发射, 虚线: 考虑二次电子发射, E0 = 5 keV)

    Figure 9.  Axial electric field Ex at P1 for different peak current densities (Solid line: not including secondary electrons; dash line: including secondary electrons, E0 = 5 keV).

    图 10  E0 = 5 keV与E0 = 50 keV条件下, P1位置的轴向电场强度Ex(J0 = 1 A/cm2)

    Figure 10.  Axial electric field Ex at P1 for E0 = 5 keV and E0 = 50 keV (J0 = 1 A/cm2).

  • [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋 译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社) 第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Woods A J, Wenaas E P 1976 IEEE Trans. Nucl. Sci. 23 1903Google Scholar

    [6]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [7]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [8]

    王泰春, 王玉芝 1986 计算物理 3 86

    Wang T C, Wang Y Z 1986 Chinese J. Comput. Phys. 3 86

    [9]

    Li J X, Cheng Y H, Wu W, Zhou H 2008 Proceedings of the 14th National Annual Conference on Nuclear Electronics and Nuclear Detection Technology Urumqi, China, July 15−20, 2008 p735

    [10]

    Holland R 1995 IEEE Trans. Electromagn. Compat. 37 433Google Scholar

    [11]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2−7, 2014 p00051

    [12]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [13]

    孙会芳, 张芳, 董志伟 2016 计算物理 33 434Google Scholar

    Sun H F, Zhang F, Dong Z W 2016 Chinese J. Comput. Phys. 33 434Google Scholar

    [14]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [15]

    Chen J H, Chao Z, Deng J H, Li Z D Z 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [16]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [17]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [18]

    Wenaas E P, Woods A J 1976 IEEE Trans. Nucl. Sci. 23 1921Google Scholar

    [19]

    周俊 2009 博士学位论文(成都: 电子科技大学)

    Zhou J 2009 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [20]

    Reimer L 2000 Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (New York: Springer) p4

    [21]

    谢爱根, 裴元吉, 王荣, 孙红兵 2005 高能物理与核物理 5 530

    Xie A G, Pei Y J, Wang R, Sun H B 2005 High Energy Phys. Nuclear Phys. 5 530

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Devices 36 1963Google Scholar

    [23]

    Valfells Á, Singh A, Kolander M J, Granatstein V L 2002 IEEE Trans. Plasma Sci. 30 1271Google Scholar

    [24]

    Furman M A, Pivi M T F 2002 Phys. Rev. Spec. Top. - Accel. Beams 5 124404Google Scholar

    [25]

    Sternglass E J 1954 Phys. Rev. 95 345Google Scholar

    [26]

    Joy D C 1995 Scanning 17 270Google Scholar

    [27]

    Hussain A, Yang L H, Mao S F, Da B, Tőkési K, Ding Z H 2021 Nucl. Mater. Energy 26 100862Google Scholar

    [28]

    刘腊群, 刘大刚, 王学琼, 彭凯, 杨超 2012 强激光与粒子束 24 1980Google Scholar

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980Google Scholar

    [29]

    Staub P F 1994 J. Phys. D Appl. Phys. 27 1533Google Scholar

    [30]

    Matsukawa T, Shimizu R, Hashimoto H 1974 J. Phys. D Appl. Phys. 7 695Google Scholar

    [31]

    陈剑楠, 陶应龙, 陈再高, 王玥 2018 现代应用物理 9 040501Google Scholar

    Chen J N, Tao Y L, Chen Z G, Wang Y 2018 Modern Appl. Phys. 9 040501Google Scholar

    [32]

    郭景海, 周辉, 吴伟, 程引会, 李进玺, 马良, 赵墨 2016 核电子学与探测技术 36 512Google Scholar

    Guo J H, Zhou H, Wu W, Cheng Y H, Li J X, Ma L, Zhao M 2016 Nuclear Electronics and Detection Techol. 36 512Google Scholar

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Meng Xiang-Chen, Wang Dan, Cai Ya-Hui, Ye Zhen, He Yong-Ning, Xu Ya-Nan. Secondary electron emission suppression on alumina surface and its application in multipactor suppression. Acta Physica Sinica, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng. Hybrid modelling of cavity system generated electromagnetic pulse in low pressure air. Acta Physica Sinica, 2022, 71(5): 055201. doi: 10.7498/aps.71.20211524
    [4] Chen Long, Sun Shao-Juan, Jiang Bo-Rui, Duan Ping, An Yu-Hao, Yang Ye-Hui. Characteristics of non-Maxwellian magnetized sheath with secondary electron emission. Acta Physica Sinica, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] Hybrid Modelling of Cavity SGEMP in Low Pressure Air. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211524
    [6] Wang Dan, Ye Ming, Feng Peng, He Yong-Ning, Cui Wan-Zhao. An effective reduction on secondary electron emission yield of gold coated surfaces by laser etching. Acta Physica Sinica, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [7] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [8] Hu Jing, Cao Meng, Li Yong-Dong, Lin Shu, Xia Ning. Optimization of surface morphology with micro meter size for suppressing secondary electron emission. Acta Physica Sinica, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [9] Bai Chun-Jiang, Feng Guo-Bao, Cui Wan-Zhao, He Yong-Ning, Zhang Wen, Hu Shao-Guang, Ye Ming, Hu Tian-Cun, Huang Guang-Sun, Wang Qi. Suppressing second electron yield based on porous anodic alumina. Acta Physica Sinica, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [10] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [11] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi. Theoretical calculation of the photoelectron angular distribution of neon. Acta Physica Sinica, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [12] Zhang Na, Cao Meng, Cui Wan-Zhao, Hu Tian-Cun, Wang Rui, Li Yun. Analytical model of secondary electron yield from metal surface with regular structures. Acta Physica Sinica, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [13] Li Yong-Dong, Yang Wen-Jin, Zhang Na, Cui Wan-Zhao, Liu Chun-Liang. A combined phenomenological model for secondary electron emission. Acta Physica Sinica, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [14] Yang Wen-Jin, Li Yong-Dong, Liu Chun-Liang. Model of secondary electron emission at high incident electron energy for metal. Acta Physica Sinica, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [15] Chang Tian-Hai, Zheng Jun-Rong. Monte-Carlo simulation of secondary electron emission from solid metal. Acta Physica Sinica, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [16] Xia Hai-Hong, Zhang Zhong-Bing, Liu Lin-Yue, Ouyang Xiao-Ping, Chen Liang, Wang Qun-Shu, Wang Lan, Ma Yan-Liang, Pan Hong-Bo. Accurate measurements of high energy proton beam by secondary electron compensation. Acta Physica Sinica, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [17] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [18] Dong Guo-Yi, Li Xiao-Wei, Wei Zhi-Ren, Yang Shao-Peng, Han Li, Fu Guang-Sheng. Investigation of influences of concentration of Mn and Cu dopants on the decay process of photogenerated charge carriers in the ZnS:Mn,Cu luminescence materials. Acta Physica Sinica, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [19] Lu Qi-liang, Zhao Guo-Qing, Zhou Zhu-Ying. Evaluation of the contribution fraction of close collision to the backward electron emission induced by He+ ion. Acta Physica Sinica, 2003, 52(5): 1278-1281. doi: 10.7498/aps.52.1278
    [20] Yang Shao-Peng, Fu Guang-Sheng, Li Xiao-Wei, Geng Ai-Cong, Han Li. The kinetics simulation of trap depths and capture cross sections of SETs in AgC l microcrystals doped with [Fe(CN)6]4- complex. Acta Physica Sinica, 2003, 52(11): 2649-2654. doi: 10.7498/aps.52.2649
Metrics
  • Abstract views:  4972
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2021
  • Accepted Date:  08 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回