Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hybrid modelling of cavity system generated electromagnetic pulse in low pressure air

Zhang Han-Tian Zhou Qian-Hong Zhou Hai-Jing Sun Qiang Song Meng-Meng Dong Ye Yang Wei Yao Jian-Sheng

Citation:

Hybrid modelling of cavity system generated electromagnetic pulse in low pressure air

Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng
PDF
HTML
Get Citation
  • The surface of metal system exposed to ionizing radiation (X-ray and γ-ray) will emit high-energy electrons through the photoelectric effect and other processes. The transient electromagnetic field generated by the high-speed electron flow is called system generated electromagnetic pulse (SGEMP), which is difficult to shield effectively. An ongoing effort has been made to investigate the SGEMP response in vacuum by numerical simulation. However, the systems are usually operated in a gaseous environment. The objective of this paper is to investigate the effect of low-pressure air on the SGEMP. A three-dimensional hybrid simulation model is developed to calculate the characteristics of the electron beam induced air plasma and its interaction with the electromagnetic field. In the hybrid model, the high-energy photoelectrons are modelled as macroparticles, and secondary electrons are treaed as fluid for a balance between efficiency and accuracy. A cylindrical cavity with an inner diameter of 100 mm and a length of 50 mm is used. The photoelectrons are emitted from one end of the cavity and are assumed to be monoenergetic (20 keV). The photoelectron pulse follows a sine-squared distribution with a peak current density of 10 A/cm2, and its full width at half maximum is 2 ns. The results show that the number density of the secondary electrons near the photoelectron emission surface and its axial gradient increase as air pressure increases. The electron number density in the middle of the cavity shows a peak value at 20 Torr (1 Torr = 133 Pa). The electron temperature decreases monotonically with the increase in pressure. The low-pressure air plasma in the cavity prevents the space charge layer from being generated. The peak value of the electric field is an order of magnitude lower than that in vacuum, and the pulse width is also significantly reduced. The emission characteristic of the photoelectrons determines the peak value of the current response. The current reaching the end of the cavity surface first increases and then decreases with pressure increasing. The plasma return current can suppress the rising rate of the total current and extend the duration of current responses. Finally, to validate the established hybrid simulation model, the calculated magnetic field is compared with that from the benchmark experiments. This paper helps to achieve a better prediction of the SGEMP response in a gaseous environment. Compared with the particle-in-cell Monte Carlo collision method, the hybrid model adopted can greatly reduce the computational cost.
      Corresponding author: Zhou Qian-Hong, zhou_qianhong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005023).
    [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社)第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-Beam Injection Experiments for Validation of Air-Chemistry Models (Report)

    [6]

    Ribière M, D’Almeida T, Cessenat O, Maulois M, Pouzalgues R, Crabos B, Delbos C, Garrigues A, Azaïs B 2016 Phys. Plasmas 23 122106Google Scholar

    [7]

    Woods A J, Delmer T N 1976 The arbitrary body of revolution code (ABORC) for SGEMP/IEMP (report)

    [8]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [9]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [10]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107Google Scholar

    [11]

    Wang Y, Wang J G, Chen Z G, Cheng G X, Wang P 2016 Comput. Phys. Commun. 205 1Google Scholar

    [12]

    Chen J N, Wang J G, Tao Y L, Chen Z G, Wang Y, Niu S L 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [13]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [14]

    Chen J H, Chao Z, Deng J H, Li Z D 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [15]

    张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生 2021 物理学报 70 165201Google Scholar

    Zhang H T, Zhou Q H, Zhou H J, Sun Q, Song M M, Dong Y, Yang W, Yao J S 2021 Acta Phys. Sin. 70 165201Google Scholar

    [16]

    孙会芳, 张玲玉, 董志伟, 周海京 2019 强激光与粒子束 31 103221Google Scholar

    Sun H F, Zhang L Y, Dong Z W, Zhou H J 2019 High Power Laser and Particle Beams 31 103221Google Scholar

    [17]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [18]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [19]

    Longmire C T 1975 IEEE Trans. Nucl. Sci. 22 2340Google Scholar

    [20]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [21]

    Strasburg S, Hinshelwood D D, Schumer J W, Mosher D, Ottinger P F, Fernsler R F, Slinker S P 2003 Phys. Plasmas 10 3758Google Scholar

    [22]

    Pusateri E N, Morris H E, Nelson E M, Ji W 2015 J. Geophys. Res. Atmos. 120 7300Google Scholar

    [23]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [24]

    Ribière M, Cessenat O, D’Almeida T, De Gaufridy De Dortan F, Maulois M, Delbos C, Garrigues A, Azaïs B 2016 Phys. Plasmas 23 032105Google Scholar

    [25]

    Zhang H T, Zhou Q H, Zhou H J, Sun Q, Song M M, Dong Y, Yang W, Yao J S 2021 J. Appl. Phys. 130 173303Google Scholar

    [26]

    Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503Google Scholar

    [27]

    李小泽, 王建国, 董长江, 张海 2008 物理学报 57 4613Google Scholar

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar

    [28]

    Birdsall C K, Langdon A B 2004 Plasma Physics via Computer Simulation (Bristol: IOP Publishing Ltd) p228

    [29]

    Pointon T D 2008 Comput. Phys. Commun. 179 535Google Scholar

    [30]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204Google Scholar

    [31]

    Esirkepov T 2001 Comput. Phys. Commun. 135 144Google Scholar

    [32]

    Greenwood A D, Cartwright K L, Luginsland J W, Baca E A 2004 J. Comput. Phys. 201 665Google Scholar

    [33]

    周辉, 程引会, 李宝忠, 陈雨生 2000 计算物理 17 121Google Scholar

    Zhou H, Cheng Y H, Li B Z, Chen Y S 2000 Chin. J. Comput. Phys. 17 121Google Scholar

    [34]

    颜强 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学) 第55页

    Yan Q 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) p55 (in Chinese)

    [35]

    Sugiyama H 1981 Radiat. Eff. Defects Solids 56 205Google Scholar

    [36]

    Sugiyama H 1985 Plasma Sources Sci. Technol. 30 331Google Scholar

    [37]

    Gümüş H 2005 Radiat. Phys. Chem. 72 7Google Scholar

    [38]

    Gümüş H 2008 Appl. Radiat. Isot. 66 1886Google Scholar

    [39]

    NIST ESTAR Database 2021 https://physics.nist.gov/Phys RefData/Star/Text/ESTAR.html [2021-8-1]

    [40]

    Longmire C T, Longley H 1973 Improvements in the Treatment of Compton Current and Air Conductivity in EMP Problems (Report)

    [41]

    Farmer W A, Cohen B I, Eng C D 2016 IEEE Trans. Nucl. Sci. 63 1259Google Scholar

    [42]

    Farmer W A, Friedman A 2015 IEEE Trans. Nucl. Sci. 62 1695Google Scholar

    [43]

    Robinson A P L, Strozzi D J, Davies J R, Gremillet L, Honrubia J J, Johzaki T, Kingham R J, Sherlock M, Solodov A A 2014 Nucl. Fusion 54 054003Google Scholar

    [44]

    Higgins D F, Longmire C L, O’Dell A A 1973 A Method for Estimating the X-Ray Produced Electromagnetic Pulse Observed in the Source Region of a High-Altitude Burst (report)

    [45]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [46]

    Phelps Database www.lxcat.net/Phelps [2021-8-1]

    [47]

    Rapp D, Englander-Golden P 1965 J. Chem. Phys. 43 1464Google Scholar

    [48]

    Kim Y K, Santos J P, Parente F 2000 Phys. Rev. A:At. Mol. Opt. Phys. 62 052710Google Scholar

    [49]

    Maulois M, Ribière M, Eichwald O, Yousfi M, Pouzalgues R, Garrigues A, Delbos C, Azaïs B 2016 Phys. Plasmas 23 102117Google Scholar

    [50]

    Gilbert J L, Radasky W A, Savage E B 2013 IEEE Trans. Electromagn. Compat. 55 446Google Scholar

    [51]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [52]

    Wu Y, Zhang H T, Luo B, Yang F, Sun H, Li T W, Tang L 2017 Plasma Chem. Plasma Process. 37 1051Google Scholar

    [53]

    Forster R A, Cox L J, Barrett R F, Booth T E, Briesmeister J F, Brown F B, Bull J S, Geisler G C, Goorley J T, Mosteller R D, Post S E, Prael R E, Selcow E C, Sood A 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 213 82Google Scholar

    [54]

    陈剑楠, 陶应龙, 牛胜利 2020 现代应用物理 11 010501

    Chen J N, Tao Y L, Niu S L 2020 Mod. Appl. Phys. 11 010501

    [55]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2–7, 2014 p00051

    [56]

    Maulois M, Ribière M, Eichwald O, Yousfi M, Pouzalgues R, Garrigues A, Delbos C, Azaïs B 2016 J. Appl. Phys. 120 123302Google Scholar

    [57]

    宋法伦, 张永辉, 向飞, 常安碧 2008 物理学报 57 1807Google Scholar

    Song F L, Zhang Y H, Xiang F, Chang A B 2008 Acta Phys. Sin. 57 1807Google Scholar

  • 图 1  粒子-流体混合模拟流程图

    Figure 1.  Flow chart of the hybrid particle-fluid model.

    图 2  N2和O2对电子的约化阻止本领(左)[38]; 电子-N2的电离碰撞截面(右)

    Figure 2.  Mass stopping power for incident electron in N2 and O2 (left)[38]; ionization cross sections between electrons and N2 (right).

    图 3  次级电子平均能量

    Figure 3.  Mean energy of the secondary electrons.

    图 4  约化swarm参数随电子能量的变化

    Figure 4.  Normalized swarm parameters as a function of electron energy.

    图 5  计算模型

    Figure 5.  Schematic of the calculation domain.

    图 6  光电子与次级电子的分布(0—20 Torr, 1—4 ns)

    Figure 6.  Distributions of photoelectrons (red dot) and secondary electrons (0–20 Torr, 1–4 ns)

    图 7  真空(a)以及10 Torr压力(b)下, 轴向电场Ex随时间的变化(x = 2, 10, 40 mm; r = 0 mm)

    Figure 7.  Time-dependent electric field Ex (x = 2, 10, 40 mm; r = 0 mm) for (a) vacuum and (b) 10 Torr.

    图 8  不同压力下, 切向磁感应强度Bφ随时间的变化(x = 48 mm; r = 48 mm)

    Figure 8.  Time-dependent magnetic flux density Bφ at different pressures (x = 48 mm; r = 48 mm).

    图 9  截面上光电子、次级电子电流随时间的变化(10 Torr) (a) x = 10 mm; (b) x = 40 mm

    Figure 9.  Time-dependent current of photoelectrons and secondary electrons (10 Torr) for the plane: (a) x = 10 mm; (b) x = 40 mm.

    图 10  不同压力下, 对称轴上次级电子数密度的分布(r = 0 mm, t = 2 ns)

    Figure 10.  Distributions of secondary electrons along the axis at different pressures (r = 10 mm, t = 2 ns).

    图 11  不同压力下, x = 24 mm处次级电子数密度的径向线积分随时间的变化

    Figure 11.  Line-integrated secondary electrons at x = 24 mm at different pressures.

    图 12  对称轴上的次级电子温度分布(r = 0 mm)

    Figure 12.  Distributions of secondary electron temperature along the axis (r = 0 mm).

    图 13  实验中电子束电流(左)与电子能量(右)随时间的关系

    Figure 13.  Electron beam current (left) and energy (right) as functions of time.

    图 14  Z = 12.5 cm, r = 13.8 cm处的磁场强度(腔体内压力3 Torr)

    Figure 14.  Magnetic field at Z = 12.5 cm, r = 13.8 cm for an air pressure of 3 Torr

  • [1]

    王泰春, 贺云汉, 王玉芝 2011 电磁脉冲导论 (北京: 国防工业出版社) 第130页

    Wang T C, He Y H, Wang Y Z 2011 Introduction to Electromagnetic Pulse (Beijing: National Defense Industry Press) p130 (in Chinese)

    [2]

    美国电磁脉冲袭击对美威胁评估委员会编 (郑毅, 梁睿, 曹保锋译 2019 电磁脉冲袭击对国家重要基础设施的影响 (北京: 科学出版社)第9页

    Commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (translated by Zheng Y, Liang R, Cao B F) 2019 Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) attack: Critical National Infrastructures (Beijing: Science Press) p9

    [3]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 2618Google Scholar

    [4]

    Genuario R D 1975 IEEE Trans. Nucl. Sci. 22 2098Google Scholar

    [5]

    Swanekamp S B, Hinshelwood D, Angus J R, Richardson A S, Mosher D 2016 Direct Electron-Beam Injection Experiments for Validation of Air-Chemistry Models (Report)

    [6]

    Ribière M, D’Almeida T, Cessenat O, Maulois M, Pouzalgues R, Crabos B, Delbos C, Garrigues A, Azaïs B 2016 Phys. Plasmas 23 122106Google Scholar

    [7]

    Woods A J, Delmer T N 1976 The arbitrary body of revolution code (ABORC) for SGEMP/IEMP (report)

    [8]

    Xu Z Q, Meng C, Jiang Y S, Wu P 2020 IEEE Trans. Nucl. Sci. 67 425Google Scholar

    [9]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [10]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107Google Scholar

    [11]

    Wang Y, Wang J G, Chen Z G, Cheng G X, Wang P 2016 Comput. Phys. Commun. 205 1Google Scholar

    [12]

    Chen J N, Wang J G, Tao Y L, Chen Z G, Wang Y, Niu S L 2019 IEEE Trans. Nucl. Sci. 66 820Google Scholar

    [13]

    Chen J N, Wang J G, Chen Z G, Ren Z P 2020 IEEE Trans. Nucl. Sci. 67 818Google Scholar

    [14]

    Chen J H, Chao Z, Deng J H, Li Z D 2020 IEEE Trans. Nucl. Sci. 67 2353Google Scholar

    [15]

    张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生 2021 物理学报 70 165201Google Scholar

    Zhang H T, Zhou Q H, Zhou H J, Sun Q, Song M M, Dong Y, Yang W, Yao J S 2021 Acta Phys. Sin. 70 165201Google Scholar

    [16]

    孙会芳, 张玲玉, 董志伟, 周海京 2019 强激光与粒子束 31 103221Google Scholar

    Sun H F, Zhang L Y, Dong Z W, Zhou H J 2019 High Power Laser and Particle Beams 31 103221Google Scholar

    [17]

    Gilbert R M, Klebers J, Bromborsky A 1977 IEEE Trans. Nucl. Sci. 24 2389Google Scholar

    [18]

    Woods A J, Hobbs W E, Wenaas E P 1981 IEEE Trans. Nucl. Sci. 28 4467Google Scholar

    [19]

    Longmire C T 1975 IEEE Trans. Nucl. Sci. 22 2340Google Scholar

    [20]

    Chan P C, Woods A J 1985 IEEE Trans. Nucl. Sci. 32 4441Google Scholar

    [21]

    Strasburg S, Hinshelwood D D, Schumer J W, Mosher D, Ottinger P F, Fernsler R F, Slinker S P 2003 Phys. Plasmas 10 3758Google Scholar

    [22]

    Pusateri E N, Morris H E, Nelson E M, Ji W 2015 J. Geophys. Res. Atmos. 120 7300Google Scholar

    [23]

    Angus J R, Mosher D, Swanekamp S B, Ottinger P F, Schumer J W, Hinshelwood D D 2016 Phys. Plasmas 23 053510Google Scholar

    [24]

    Ribière M, Cessenat O, D’Almeida T, De Gaufridy De Dortan F, Maulois M, Delbos C, Garrigues A, Azaïs B 2016 Phys. Plasmas 23 032105Google Scholar

    [25]

    Zhang H T, Zhou Q H, Zhou H J, Sun Q, Song M M, Dong Y, Yang W, Yao J S 2021 J. Appl. Phys. 130 173303Google Scholar

    [26]

    Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503Google Scholar

    [27]

    李小泽, 王建国, 董长江, 张海 2008 物理学报 57 4613Google Scholar

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar

    [28]

    Birdsall C K, Langdon A B 2004 Plasma Physics via Computer Simulation (Bristol: IOP Publishing Ltd) p228

    [29]

    Pointon T D 2008 Comput. Phys. Commun. 179 535Google Scholar

    [30]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204Google Scholar

    [31]

    Esirkepov T 2001 Comput. Phys. Commun. 135 144Google Scholar

    [32]

    Greenwood A D, Cartwright K L, Luginsland J W, Baca E A 2004 J. Comput. Phys. 201 665Google Scholar

    [33]

    周辉, 程引会, 李宝忠, 陈雨生 2000 计算物理 17 121Google Scholar

    Zhou H, Cheng Y H, Li B Z, Chen Y S 2000 Chin. J. Comput. Phys. 17 121Google Scholar

    [34]

    颜强 2017 博士学位论文 (哈尔滨: 哈尔滨工程大学) 第55页

    Yan Q 2017 Ph. D. Dissertation (Harbin: Harbin Engineering University) p55 (in Chinese)

    [35]

    Sugiyama H 1981 Radiat. Eff. Defects Solids 56 205Google Scholar

    [36]

    Sugiyama H 1985 Plasma Sources Sci. Technol. 30 331Google Scholar

    [37]

    Gümüş H 2005 Radiat. Phys. Chem. 72 7Google Scholar

    [38]

    Gümüş H 2008 Appl. Radiat. Isot. 66 1886Google Scholar

    [39]

    NIST ESTAR Database 2021 https://physics.nist.gov/Phys RefData/Star/Text/ESTAR.html [2021-8-1]

    [40]

    Longmire C T, Longley H 1973 Improvements in the Treatment of Compton Current and Air Conductivity in EMP Problems (Report)

    [41]

    Farmer W A, Cohen B I, Eng C D 2016 IEEE Trans. Nucl. Sci. 63 1259Google Scholar

    [42]

    Farmer W A, Friedman A 2015 IEEE Trans. Nucl. Sci. 62 1695Google Scholar

    [43]

    Robinson A P L, Strozzi D J, Davies J R, Gremillet L, Honrubia J J, Johzaki T, Kingham R J, Sherlock M, Solodov A A 2014 Nucl. Fusion 54 054003Google Scholar

    [44]

    Higgins D F, Longmire C L, O’Dell A A 1973 A Method for Estimating the X-Ray Produced Electromagnetic Pulse Observed in the Source Region of a High-Altitude Burst (report)

    [45]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [46]

    Phelps Database www.lxcat.net/Phelps [2021-8-1]

    [47]

    Rapp D, Englander-Golden P 1965 J. Chem. Phys. 43 1464Google Scholar

    [48]

    Kim Y K, Santos J P, Parente F 2000 Phys. Rev. A:At. Mol. Opt. Phys. 62 052710Google Scholar

    [49]

    Maulois M, Ribière M, Eichwald O, Yousfi M, Pouzalgues R, Garrigues A, Delbos C, Azaïs B 2016 Phys. Plasmas 23 102117Google Scholar

    [50]

    Gilbert J L, Radasky W A, Savage E B 2013 IEEE Trans. Electromagn. Compat. 55 446Google Scholar

    [51]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [52]

    Wu Y, Zhang H T, Luo B, Yang F, Sun H, Li T W, Tang L 2017 Plasma Chem. Plasma Process. 37 1051Google Scholar

    [53]

    Forster R A, Cox L J, Barrett R F, Booth T E, Briesmeister J F, Brown F B, Bull J S, Geisler G C, Goorley J T, Mosteller R D, Post S E, Prael R E, Selcow E C, Sood A 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 213 82Google Scholar

    [54]

    陈剑楠, 陶应龙, 牛胜利 2020 现代应用物理 11 010501

    Chen J N, Tao Y L, Niu S L 2020 Mod. Appl. Phys. 11 010501

    [55]

    Pointon T D, Cartwright K L 2014 Proceedings of the 67th APS Gaseous Electronics Conference Raleigh NC, USA, November 2–7, 2014 p00051

    [56]

    Maulois M, Ribière M, Eichwald O, Yousfi M, Pouzalgues R, Garrigues A, Delbos C, Azaïs B 2016 J. Appl. Phys. 120 123302Google Scholar

    [57]

    宋法伦, 张永辉, 向飞, 常安碧 2008 物理学报 57 1807Google Scholar

    Song F L, Zhang Y H, Xiang F, Chang A B 2008 Acta Phys. Sin. 57 1807Google Scholar

  • [1] Shu Pan-Pan, Zhao Peng-Cheng, Wang Rui. Electromagnetic particle simulation of secondary electron multipactor characteristics in inner surface of 110 GHz microwave output window. Acta Physica Sinica, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng. Effect of secondary electrons on SGEMP response. Acta Physica Sinica, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [3] Hybrid Modelling of Cavity SGEMP in Low Pressure Air. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211524
    [4] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [5] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [6] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi. Theoretical calculation of the photoelectron angular distribution of neon. Acta Physica Sinica, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [7] Cui Xin, Li Su-Yu, Guo Fu-Ming, Tian Yuan-Ye, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. Photon and photoelectron emission of the atom under the action of high-frequency laser pulse. Acta Physica Sinica, 2015, 64(4): 043201. doi: 10.7498/aps.64.043201
    [8] Yang Chao, Long Ji-Dong, Wang Ping, Liao Fang-Yan, Xia Meng-Zhong, Liu La-Qun. The full three-dimensional electromagnetic PIC/MCC numerical algorithm research of Penning ion source discharge. Acta Physica Sinica, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [9] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [10] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [11] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [12] Liu Zheng, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Zhao Zhen-Yu. Research of bipolar amplification effect in single event transient. Acta Physica Sinica, 2010, 59(1): 649-654. doi: 10.7498/aps.59.649
    [13] Liao Chen, Liu Da-Gang, Liu Sheng-Gang. Three-dimensional electromagnetic particle-in-cell simulation by parallel computing. Acta Physica Sinica, 2009, 58(10): 6709-6718. doi: 10.7498/aps.58.6709
    [14] Gong Yu-Bin, Zhang Zhang, Wei Yan-Yu, Meng Fan-Bao, Fan Zhi-Kai, Wang Wen-Xiang. Simulation of pulse shortening phenomena in high power microwave tube using PIC method. Acta Physica Sinica, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [15] Xu Han, Chang Wen-Wei, Yin Yan, Zhuo Hong-Bin. PIC simulation of the wake field acceleration driven by triangle-shaped laser pulse. Acta Physica Sinica, 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [16] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [17] Dong Guo-Yi, Li Xiao-Wei, Wei Zhi-Ren, Yang Shao-Peng, Han Li, Fu Guang-Sheng. Investigation of influences of concentration of Mn and Cu dopants on the decay process of photogenerated charge carriers in the ZnS:Mn,Cu luminescence materials. Acta Physica Sinica, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [18] Yang Shao-Peng, Fu Guang-Sheng, Li Xiao-Wei, Geng Ai-Cong, Han Li. The kinetics simulation of trap depths and capture cross sections of SETs in AgC l microcrystals doped with [Fe(CN)6]4- complex. Acta Physica Sinica, 2003, 52(11): 2649-2654. doi: 10.7498/aps.52.2649
    [19] FENG KE-AN, HUANG YI, TANG JING-CHANG. STUDIES OF FOURIER-TRANSFORM ANALYSIS METHOD FOR ENERGY-DEPENDENT PHOTOELECTRON DIFFRACTION (II)——THE SYSTEMS OF Se-Ni (111) AND S-Ni(111). Acta Physica Sinica, 1986, 35(4): 467-474. doi: 10.7498/aps.35.467
    [20] TANG JING-CHANG, HUANG YI. STUDIES OF FOURIER-TRANSFORM ANALYSIS METHOD FOR ENERGY-DEPENDENT PHOTOELEC-TRON-DIFFRACTION (Ⅰ)——THE SYSTEMS OF Se-Ni(001) AND S-Ni(001). Acta Physica Sinica, 1985, 34(4): 464-475. doi: 10.7498/aps.34.464
Metrics
  • Abstract views:  4520
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2021
  • Accepted Date:  11 November 2021
  • Available Online:  04 March 2022
  • Published Online:  05 March 2022

/

返回文章
返回